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Preface

Digital signal processing is currently in a period of rapid growth caused by recent
advances in VLSI technology. This is especially true of three areas of optimum signal pro-
cessing; namely, real-time adaptive signal processing, eigenvector methods of spectrum
estimation, and parallel processor implementations of optimum filtering and prediction
algorithms.

In this edition the book has been brought up to date by increasing the emphasis
on the above areas and including several new developments. The major additions are:
a unified presentation of the fast recursive least-squares algorithms for adaptive pro-
cessing; the discussion of several eigenvector methods of spectrum estimation such as
MUSIC, minimum-norm, ESPRIT, spatial smoothing for coherent signals, and others; and
discussion of the Schur algorithm for linear prediction admitting efficient parallel imple-
mentations, and the more efficient split Schur and split Levinson algorithms. Moreover,
older but basic material has been added such as an expanded discussion of Kalman
filtering and discussion of classical statistical estimation concepts such as maximum
likelihood, Cramér-Rao bound, and asymptotic statistical properties applied to linear
prediction and eigenstructure methods.

Two new sections have been added to Chapter 1 with the aim of strengthening the
discussion of statistical concepts while at the same time emphasizing the unity of ideas
of optimum signal processing. The first section, dealing with forward and backward
prediction, develops further the geometrical point of view of random variables and lin-
ear estimation and provides a preliminary introduction to a large number of methods
that have become important tools in signal processing; namely, Levinson’s and Schur’s
algorithms, fast matrix factorizations, Gram-Schmidt orthogonalizations, lattice real-
izations of linear predictors and Wiener filters, and fast RLS algorithms. The second
section discusses the properties of maximum likelihood estimators and gives a deriva-
tion of the Cramér-Rao bound using correlation canceling methods. The results of this
section are used later to derive the asymptotic statistical properties of linear predictors
and eigenstructure methods.

Chapter 2 has been revised to include a preliminary introduction to the Schur algo-
rithm using a gapped function approach. Chapter 3 remains unchanged. A new section
on Kalman filtering has been added to Chapter 4 that includes a derivation of the Kalman
filter, a geometrical interpretation of it, and discussion of its asymptotic convergence
properties.

Three new sections have been added to Chapter 5. The first deals with the problem
of autocorrelation sequence extensions, such as the maximum entropy or autoregres-
sive extensions, and discusses the case of singular autocorrelation matrices, their sinu-
soidal representations, and their connection to Pisarenko’s harmonic retrieval method.
The second section contains a discussion of the recently developed split or immitance-
domain Levinson algorithm which is fifty percent more efficient than the conventional
Levinson algorithm. The third section presents the Schur algorithm for linear predic-
tion which has received a lot of attention recently because of its efficient parallel im-
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plementations, and discusses its application to fast matrix factorizations. The split or
immitance-domain version of the Schur algorithm is also discussed.

The material on autoregressive spectrum estimation, spectral analysis of sinusoids
in noise, and superresolution array processing, has been separated from Chapter 5 to
form a new Chapter 6. This chapter also includes new sections on several eigenstructure
methods and a section on the asymptotic statistical properties of such methods. The
following methods are discussed: MUSIC, minimum-norm, reduced-order, maximum
likelihood, ESPRIT, and spatial smoothing for coherent signals.

The chapter on adaptive filtering, now Chapter 7, has been expanded considerably.
It contains a revised discussion of the adaptive gradient lattice Wiener filter and its
spatial processing counterpart—the adaptive Gram-Schmidt array preprocessor based
on the modified Gram-Schmidt procedure. The last four sections are devoted to a uni-
fied derivation of the exact recursive least-squares adaptation algorithms including the
conventional RLS, fast Kalman and FAEST/FTF direct form versions, and RLS lattice ver-
sions. We show first that the algebraic steps and computational reductions that make
all the fast versions possible are a direct consequence of the rank-one updating prop-
erties of covariance matrices, and then apply the shift-invariance property to complete
the derivation of the various RLS algorithms.

A new appendix has been added containing a discussion of uniform and gaussian
random number generators and ways to improve them such as shuffling. The number
of subroutines discussed in the text has been tripled and the routines have been written
both in FORTRAN and C. Several new problems and computer experiments have been
added, and a solutions manual is available through the publisher. The material in this
expanded edition is now adequate for a two-semester graduate course on the subject.

I have tried in this edition to preserve the basic style and objectives of the book and
would like to thank the many colleagues and students who have given me their feedback
on the first edition. Working on the revision was a great deal of fun and it was made
even more so by my three-year old son, John.

Sophocles J. Orfanidis
1988

The content of the 2007 republication of this book remains the same as that of the
1988 edition, except for some corrections, the deletion from the Appendix of the Fortran
and C function listings, which are now available online, and the addition of MATLAB
versions of all the functions. A pdf version of the book, as well as all the functions, can
be downloaded freely from the web page:

http://www.ece.rutgers.edu/~orfanidi/osp2e

Sophocles J. Orfanidis
2007



Preface to the First Edition

The purpose of this book is to provide an introduction to signal processing methods
that are based on optimum Wiener filtering and least-squares estimation concepts. Such
methods have a remarkably broad range of applications, ranging from the analysis and
synthesis of speech, data compression, image processing and modeling, channel equal-
ization and echo cancellation in digital data transmission, geophysical signal processing
in oil exploration, linear predictive analysis of EEG signals, modern methods of high-
resolution spectrum estimation, and superresolution array processing, to adaptive sig-
nal processing for sonar, radar, system identification, and adaptive control applications.
The structure of the book is to present the Wiener filtering concept as the basic unify-
ing theme that ties together the various signal processing algorithms and techniques
currently used in the above applications.

The book is based on lecture notes for a second-semester graduate-level course on
advanced topics in digital signal processing that I have taught at Rutgers University
since 1979. The book is primarily addressed to beginning graduate students in elec-
trical engineering, but it may also be used as a reference by practicing engineers who
want a concise introduction to the subject. The prerequisites for using the book are an
introductory course on digital signal processing, such as on the level of Oppenheim and
Schafer’s book, and some familiarity with probability and random signal concepts, such
as on the level of Papoulis’ book.

Chapter 1 sets many of the objectives of the book and serves both as a review of
probability and random signals and as an introduction to some of the basic concepts
upon which the rest of the text is built. These are the concept of correlation canceling
and its connection to linear mean-squared estimation, and the concept of Gram-Schmidt
orthogonalization of random variables and its connection to linear prediction and signal
modeling. After a brief review of some pertinent material on random signals, such as
autocorrelations, power spectra, and the periodogram and its improvements, we dis-
cuss parametric signal models in which the random signal is modeled as the output
of a linear system driven by white noise and present an overview of the uses of such
models in signal analysis and synthesis, spectrum estimation, signal classification, and
data compression applications. A first-order autoregressive model is used to illustrate
many of these ideas and to motivate some practical methods of extracting the model
parameters from actual data.

Chapter 2 is also introductory, and its purpose is to present a number of straightfor-
ward applications and simulation examples that illustrate the practical usage of random
signal concepts. The selected topics include simple designs for signal enhancement fil-
ters, quantization noise in digital filters, and an introduction to linear prediction based
on the finite past. The last two topics are then merged into an introductory discussion
of data compression by DPCM methods.

Chapter 3 introduces the concept of minimal phase signals and filters and its role in
the making of parametric signal models via spectral factorization. These methods are
used in Chapter 4 for the solution of the Wiener filtering problem.
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The basic concept of the Wiener filter as an optimum filter for estimating one signal
from another is developed in Chapter 4. The Wiener filter is also viewed as a correlation
canceler and as an optimal signal separator. We consider both the stationary and non-
stationary Wiener filters, as well as the more practical FIR Wiener filter. While discussing
a simple first-order Wiener filter example, we take the opportunity to introduce some
elementary Kalman filter concepts. We demonstrate how the steady-state Kalman filter
is equivalent to the Wiener filter and how its solution may be obtained from the steady-
state algebraic Riccati equation which effects the spectral factorization required in the
Wiener case. We also show how the Kalman filter may be thought of as the whitening
filter of the observation signal and discuss its connection to the Gram-Schmidt orthogo-
nalization and parametric signal models of Chapter 1. This chapter is mainly theoretical
in character. Practical implementations and applications of Wiener filters are discussed
in Chapter 5 using block-processing methods and in Chapter 6 using real-time adaptive
processing techniques.

Chapter 5 begins with a discussion of the full linear prediction problem and its con-
nection to signal modeling and continues with the problem of linear prediction based
on the finite past and its efficient solution via the Levinson recursion. We discuss the
analysis and synthesis lattice filters of linear prediction, as well as the lattice realizations
of more general Wiener filters that are based on the orthogonality property of the back-
ward prediction errors. The autocorrelation, covariance, and Burg’s methods of linear
predictive analysis are presented, and their application to speech analysis and synthesis
and to spectrum estimation is discussed. The problem of estimating the frequencies of
multiple sinusoids in noise and the problem of resolving the directions of point-source
emitters by spatial array processing are discussed. Four approaches to these problems
are presented, namely, the classical method based on the windowed autocorrelation,
the maximum entropy method based on linear prediction, Capon’s maximum likelihood
method, and eigenvector-based methods. We also discuss the problem of wave propa-
gation in layered media and its connection to linear prediction, and present the dynamic
predictive deconvolution procedure for deconvolving the multiple reverberation effects
of a layered structure from the knowledge of its reflection or transmission response.
The chapter ends with a discussion of a least-squares reformulation of the Wiener fil-
tering problem that can be used in the design of waveshaping and spiking filters for
deconvolution applications.

Real-time adaptive implementations of Wiener filters are discussed in Chapter 6.
The basic operation of an adaptive filter is explained by means of the simplest possi-
ble filter, namely, the correlation canceler loop, which forms the elementary building
block of higher order adaptive filters. The Widrow-Hoff LMS adaptation algorithm and
its convergence properties are discussed next. Several applications of adaptive filters
are presented, such as adaptive noise canceling, adaptive channel equalization and echo
cancellation, adaptive signal separation and the adaptive line enhancer, adaptive spec-
trum estimation based on linear prediction, and adaptive array processing. We also
discuss some recent developments, such as the adaptive implementation of Pisarenko’s
method of harmonic retrieval, and two alternative adaptation algorithms that offer very
fast speed of convergence, namely, recursive least-squares, and gradient lattice adaptive
filters.

The subject of Wiener filtering and linear estimation is vast. The selection of ma-
terial in this book reflects my preferences and views on what should be included in an
introductory course on this subject. The emphasis throughout the book is on the signal
processing procedures that grow out of the fundamental concept of Wiener filtering.
An important ingredient of the book is the inclusion of several computer experiments
and assignments that demonstrate the successes and limitations of the various signal
processing algorithms that are discussed. A set of FORTRAN 77 subroutines, designed
to be used as a library, has been included in an appendix.
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1
Random Signals

1.1 Probability Density, Mean, Variance

In this section, we present a short review of probability concepts. It is assumed that the
student has had a course on the subject on the level of Papoulis’ book [1].

Let x be a random variable having probability density p(x). Its mean, variance, and
second moment are defined by the expectation values

m = E[x] =
∫∞
−∞
xp(x)dx = mean

σ2 = var(x)= E[
(x−m)2] = ∫∞

−∞
(x−m)2p(x)dx = variance

E[x2] =
∫∞
−∞
x2p(x)dx = second moment

These quantities are known as second-order statistics of the random variable x. Their
importance is linked with the fact that most optimal filter design criteria require knowl-
edge only of the second-order statistics and do not require more detailed knowledge,
such as probability densities. It is of primary importance, then, to be able to extract
such quantities from the actual measured data.

The probability that the random variable x will assume a value within an interval of
values [a, b] is given by

Prob[a ≤ x ≤ b]=
∫ b
a
p(x)dx = shaded area

The probability density is always normalized to unity by∫∞
−∞
p(x)dx = 1

which states that the probability of x taking a value somewhere within its range of
variation is unity, that is, certainty. This property also implies

σ2 = E[
(x−m)2] = E[x2]−m2

Example 1.1.1: Gaussian, or normal, distribution
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p(x)= 1√
2πσ

exp
[−(x−m)2/2σ2

]

Example 1.1.2: Uniform distribution

p(x)=
⎧⎨⎩1/Q , for −Q/2 ≤ x ≤ Q/2

0, otherwise

Its variance is σ2 = Q2/12. ��

Both the gaussian and the uniform distributions will prove to be important examples.
In typical signal processing problems of designing filters to remove or separate noise
from signal, it is often assumed that the noise interference is gaussian. This assumption
is justified on the grounds of the central limit theorem, provided that the noise arises
from many different noise sources acting independently of each other.

The uniform distribution is also important. In digital signal processing applications.
the quantization error arising from the signal quantization in the A/D converters, or the
roundoff error arising from the finite accuracy of the internal arithmetic operations in
digital filters, can often be assumed to be uniformly distributed.

Every computer provides system routines for the generation of random numbers.
For example, the routines RANDU and GAUSS of the IBM Scientific Subroutine Package
generate uniformly distributed random numbers over the interval [0,1], and gaussian-
distributed numbers, respectively. GAUSS calls RANDU twelve times, thus generating
twelve independent uniformly distributed random numbers x1, x2, . . . , x12. Then, their
sum x = x1+x2+· · ·+x12, will be approximately gaussian, as guaranteed by the central
limit theorem. It is interesting to note that the variance of x is unity, as it follows from
the fact that the variance of each xi, is 1/12:

σ2
x = σ2

x1
+σ2

x2
+ · · · +σ2

x12
= 1

12
+ 1

12
+ · · · + 1

12
= 1

The mean of x is 12/2 = 6. By shifting and scaling x, one can obtain a gaussian-
distributed random number of any desired mean and variance. Appendix A contains a
discussion of random number generators and methods to improve them, such as shuf-
fling or using several generators in combination. A number of FORTRAN and C routines
for generating uniform and gaussian random numbers are included.

1.2 Chebyshev’s Inequality

The variance σ2 of a random variable x is a measure of the spread of the x-values
about their mean. This intuitive interpretation of the variance is a direct consequence
of Chebyshev’s inequality, which states that the x-values tend to cluster about their
mean in the sense that the probability of a value not occurring in the near vicinity of the
mean is small; and it is smaller the smaller the variance.
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More precisely, for any probability density p(x) and any Δ > 0, the probability that
x will fall outside the interval of values [m−Δ,m+Δ] is bounded by σ2/Δ2. Thus, for
fixed Δ, as the variance σ2 becomes smaller, the x-values tend to cluster more narrowly
about the mean. In the extreme limiting case of a deterministic variable x = m, the
density becomes infinitely narrow, p(x)= δ(x−m), and has zero variance.

Prob
[|x−m| ≥ Δ] ≤ σ2

Δ2

(Chebyshev’s Inequality)

Chebyshev’s inequality is especially important in proving asymptotic convergence
results for sample estimates of parameters. For example, considerN independent sam-
ples {x1, x2, . . . , xN} drawn from a gaussian probability distribution of mean m and
variance σ2. The sample estimate of the mean is

m̂ = 1

N
(x1 + x2 + · · · + xN) (1.2.1)

Being a sum of N gaussian random variables, m̂ will itself be a gaussian random
variable. Its probability density is completely determined by the corresponding mean
and variance. These are found as follows.

E[m̂]= 1

N
(
E[x1]+E[x2]+· · · + E[xN]

) = 1

N
(m+m+ · · · +m)=m

Therefore, m̂ is an unbiased estimator of m. However, the goodness of m̂ as an es-
timator must be judged by how small its variance is—the smaller the better, by Cheby-
shev’s inequality. By the assumption of independence, we have

var(m̂)= E[
(m̂−m)2] = 1

N2

(
σ2
x1
+σ2

x2
+ · · · +σ2

xN
) = 1

N2

(
Nσ2) = σ2

N
(1.2.2)

Thus, m̂ is also a consistent estimator of m in the sense that its variance tends to
zero as the number of samples N increases. The values of m̂ will tend to cluster more
and more closely about the true value ofm asN becomes larger. Chebyshev’s inequality
implies that the probability of m̂ falling outside any fixed neighborhood ofm will tend
to zero for large N. Equivalently, m̂ will converge to m with probability one. This can
also be seen from the probability density of m̂, which is the gaussian

p(m̂)= N1/2

(2π)1/2σ
exp

[− N
2σ2

(m̂−m)2]
In the limit of large N, this density tends to the infinitely narrow delta function

density p(m̂)= δ(m̂ − m). In addition to the sample mean, we may also compute
sample estimates of the variance σ2 by

σ̂2 = 1

N

N∑
i=1

(xi − m̂)2 (1.2.3)

It is easily shown [2,3] that this estimator is slightly biased. But for large N, it is
asymptotically unbiased and consistent as can be seen from its mean and variance:

E[σ̂2]= N − 1

N
σ2 , var(σ̂2)= N − 1

N2
2σ4 (1.2.4)

An unbiased and consistent estimator of σ2 is the standard deviation defined by
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s2 = 1

N − 1

N∑
i=1

(xi − m̂)2 (1.2.5)

It has E[s2]= σ2 and var(s2)= 2σ4/(N − 1) . In addition to the requirements of
asymptotic unbiasedness and consistency, a good estimator of a parameter must also be
judged in terms of its efficiency [2,3], which determines how closely the estimator meets
its Cramér-Rao bound. This is discussed in Section 1.17. We will see there that the es-
timators (1.2.1) and (1.2.3)—being maximum likelihood estimators—are asymptotically
efficient.

1.3 Joint and Conditional Densities, and Bayes’ Rule

Next, we discuss random vectors. A pair of two different random variables x = (x1, x2)
may be thought of as a vector-valued random variable. Its statistical description is more
complicated than that of a single variable and requires knowledge of the joint probability
density p(x1, x2). The two random variables may or may not have any dependence on
each other. It is possible, for example, that if x2 assumes a particular value, then this
fact may influence, or restrict, the possible values that x1 can then assume.

A quantity that provides a measure for the degree of dependence of the two variables
on each other is the conditional density p(x1|x2) of x1 given x2; and p(x2|x1) of x2 given
x1. These are related by Bayes’ rule

p(x1, x2)= p(x1|x2)p(x2)= p(x2|x1)p(x1)

More generally, Bayes’ rule for two events A and B is

p(A,B)= p(A|B)p(B)= p(B|A)p(A)

The two random variables x1 and x2 are independent of each other if they do not
condition each other in any way, that is, if

p(x1|x2)= p(x1) or p(x2|x1)= p(x2)

In other words, the occurrence of x2 does not in any way influence the variable x1.
When two random variables are independent, their joint density factors into the product
of single (marginal) densities:

p(x1, x2)= p(x1)p(x2)

The converse is also true. The correlation between x1 and x2 is defined by the expectation
value

E[x1x2]=
∫∫
x1x2p(x1, x2)dx1dx2

When x1 and x2 are independent, the correlation also factors as E[x1x2]= E[x1]E[x2].

Example 1.3.1: Suppose x1 is related to x2 by

x1 = 5x2 + v

where v is a zero-mean, unit-variance, gaussian random variable assumed to be indepen-
dent of x2. Determine the conditional density and conditional mean of x1 given x2.
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Solution: The randomness of x1 arises both from the randomness of x2 and the randomness of
v. But if x2 takes on a particular value, then the randomness of x1 will arise only from v.
Identifying elemental probabilities we have

p(x1|x2)dx1 = p(v)dv = (2π)−1/2exp
(−1

2
v2

)
dv

But, dx1 = dv and v = x1 − 5x2. Therefore,

p(x1|x2)= (2π)−1/2exp
[−1

2
(x1 − 5x2)2

]
The conditional mean is the mean of x1 with respect to the density p(x1|x2). It is evident
from the above gaussian expression that the conditional mean is E[x1|x2]= 5x2. This can
also be found directly as follows.

E[x1|x2]= E
[
(5x2 + v)|x2

] = 5x2 + E[v|x2]= 5x2

where we used the independence of v and x2 to replace the conditional mean of v with its
unconditional mean, which was given to be zero, that is, E[v|x2]= E[v]= 0. ��

The concept of a random vector generalizes to any dimension. A vector ofN random
variables

x =

⎡⎢⎢⎢⎢⎢⎣
x1

x2

...
xN

⎤⎥⎥⎥⎥⎥⎦
requires knowledge of the joint density

p(x)= p(x1, x2, . . . , xN) (1.3.1)

for its complete statistical description. The second-order statistics of x are its mean, its
correlation matrix, and its covariance matrix, defined by

m = E[x] , R = E[xxT] , Σ = E[
(x−m)(x−m)T

]
(1.3.2)

where the superscript T denotes transposition, and the expectation operations are de-
fined in terms of the joint density (1.3.1); for example,

E[x]=
∫

xp(x)dNx

where dNx = dx1dx2 · · ·dxN denotes the corresponding N-dimensional volume ele-
ment. The ijth matrix element of the correlation matrix R is the correlation between
the ith random variable xi with the jth random variable xj, that is, Rij = E[xixj] . It is
easily shown that the covariance and correlation matrices are related by

Σ = R−mmT

When the mean is zero, R and Σ coincide. Both R and Σ are symmetric positive semi-
definite matrices.

Example 1.3.2: The probability density of a gaussian random vector x = [x1, x2, . . . , xN]T is
completely specified by its mean m and covariance matrix Σ, that is,

p(x)= 1

(2π)N/2(detΣ)1/2 exp
[−1

2
(x−m)TΣ−1(x−m)

]
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Example 1.3.3: Under a linear transformation, a gaussian random vector remains gaussian. Let
x be a gaussian random vector of dimension N, mean mx, and covariance Σx. Show that
the linearly transformed vector

ξξξ = Bx where B is a nonsingular N×N matrix

is gaussian-distributed with mean and covariance given by

mξ = Bmx , Σξ = BΣxBT (1.3.3)

The relationships (1.3.3) are valid also for non-gaussian random vectors. They are easily
derived as follows:

E[ξξξ]= E[Bx]= BE[x] , E[ξξξξξξT]= E[Bx(Bx)T]= BE[xxT]BT

The probability density pξ(ξξξ) is related to the density px(x) by the requirement that,
under the above change of variables, they both yield the same elemental probabilities:

pξ(ξξξ)dNξξξ = px(x)dNx (1.3.4)

Since the Jacobian of the transformation from x to ξξξ is dNξξξ = |detB|dNx, we obtain
pξ(ξξξ)= px(x)/|detB|. Noting the invariance of the quadratic form

(ξξξ−mξ)TΣ−1
ξ (ξξξ−mξ) = (x−mx)TBT(BΣxBT)−1B(x−mx)

= (x−mx)TΣ−1
x (x−mx)

and that detΣξ = det(BΣxBT)= (detB)2detΣx, we obtain

pξ(ξξξ)= 1

(2π)N/2(detΣξ)1/2 exp
[−1

2
(ξξξ−mξ)TΣ−1

ξ (ξξξ−mξ)
]

Example 1.3.4: Consider two zero-mean random vectors x and y of dimensions N and M, re-
spectively. Show that if they are uncorrelated and jointly gaussian, then they are also
independent of each other. That x and y are jointly gaussian means that the (N+M)-
dimensional joint vector z =

[
x
y

]
is zero-mean and gaussian, that is,

p(z)= 1

(2π)(N+M)/2(detRzz)1/2 exp
[−1

2
zTR−1

zz z
]

where the correlation (covariance) matrix Rzz is

Rzz = E
[[

x
y

]
[xT,yT]

]
=

[
E[xxT] E[xyT]
E[yxT] E[yyT]

]
=

[
Rxx Rxy
Ryx Ryy

]

If x and y are uncorrelated, that is, Rxy = E[xyT]= 0, then the matrix Rzz becomes block
diagonal and the quadratic form of the joint vector becomes the sum of the individual
quadratic forms:

zTR−1
zz z = [xT,yT]

[
R−1
xx 0
0 R−1

yy

][
x
y

]
= xTR−1

xx x+ yTR−1
yyy

Since Rxy = 0 also implies that detRzz = (detRxx)(detRyy), it follows that the joint
density p(z)= p(x,y) factors into the marginal densities:

p(x,y)= p(x)p(y)

which shows the independence of x and y.



1.4. Correlation Canceling 7

Example 1.3.5: Given a random vector x with mean m and covariance Σ, show that the best
choice of a deterministic vector x̂ which minimizes the quantity

Ree = E[eeT]= minimum , where e = x− x̂,

is the mean m itself, that is, x̂ = m. Also show that for this optimal choice of x̂, the actual
minimum value of the quantity Ree is the covariance Σ. This property is easily shown by
working with the deviation of x̂ from the mean m, that is, let

x̂ = m+ΔΔΔ

Then, the quantity Ree becomes

Ree = E[eeT]= E[
(x−m−ΔΔΔ)(x−m−ΔΔΔ)T

]
= E[

(x−m)(x−m)T
]−ΔΔΔE[xT −mT]−E[x−m]ΔΔΔ+ΔΔΔΔΔΔT

= Σ +ΔΔΔΔΔΔT

where we used the fact that E[x−m]= E[x]−m = 0. Since the matrix ΔΔΔΔΔΔT is nonnegative-
definite, it follows that Ree, will be minimized when ΔΔΔ = 0, and in this case the minimum
value will be Rmin

ee = Σ.

Since Ree is a matrix, the sense in which it is minimized must be clarified. The statement
thatRee is greater thanRmin

ee means that the differenceRee−Rmin
ee is a positive semi-definite

(and symmetric) matrix, and therefore we have for the scalar quantities: aTReea ≥ aTRmin
ee a

for any vector a. ��

1.4 Correlation Canceling

The concept of correlation canceling plays a central role in the development of many
optimum signal processing algorithms, because a correlation canceler is also the best
linear processor for estimating one signal from another.

Consider two zero-mean random vectors x and y of dimensions N and M, respec-
tively. If x and y are correlated with each other in the sense that Rxy = E[xyT]	= 0, then
we may remove such correlations by means of a linear transformation of the form

e = x−Hy (1.4.1)

where theN×MmatrixHmust be suitably chosen such that the new pair of vectors e,y
are no longer correlated with each other, that is, we require

Rey = E[eyT]= 0 (1.4.2)

Using Eq. (1.4.1), we obtain

Rey = E[eyT]= E[
(x−Hy)yT

] = E[xyT]−HE[yyT]= Rxy −HRyy
Then, the condition Rey = 0 immediately implies that

H = RxyR−1
yy = E[xyT]E[yyT]−1 (1.4.3)

Using Rey = 0, the covariance matrix of the resulting vector e is easily found to be

Ree = E[eeT]= E[
e(xT − yTH)

] = Rex −ReyHT = Rex = E[
(x−Hy)xT

]
, or,

Ree = Rxx −HRyx = Rxx −RxyR−1
yyRyx (1.4.4)
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The vector
x̂ = Hy = RxyR−1

yyy = E[xyT]E[yyT]−1y (1.4.5)

obtained by linearly processing the vector y by the matrix H is called the linear regres-
sion, or orthogonal projection, of x on the vector y. In a sense to be made precise later,
x̂ also represents the best “copy,” or estimate, of x that can be made on the basis of the
vector y. Thus, the vector e = x−Hy = x− x̂ may be thought of as the estimation error.

Actually, it is better to think of x̂ = Hy not as an estimate of x but rather as an
estimate of that part of x which is correlated with y. Indeed, suppose that x consists of
two parts

x = x1 + x2

such that x1 is correlated with y, but x2 is not, that is, Rx2y = E[x2yT]= 0. Then,

Rxy = E[xyT]= E[
(x1 + x2)yT]= Rx1y +Rx2y = Rx1y

and therefore,

x̂ = RxyR−1
yyy = Rx1yR

−1
yyy = x̂1

The vector e = x− x̂ = x1 + x2 − x̂1 = (x1 − x̂1)+x2 consists of the estimation error
(x1−x̂1) of the x1-part plus the x2-part. Both of these terms are separately uncorrelated
from y. These operations are summarized in block diagram form in Fig. 1.1.

Fig. 1.1 Correlation canceler.

The most important feature of this arrangement is the correlation cancellation prop-
erty which may be summarized as follows: If x has a part x1 which is correlated with y,
then this part will tend to be canceled as much as possible from the output e. The linear
processor H accomplishes this by converting y into the best possible copy x̂1 of x1 and
then proceeds to cancel it from the output. The output vector e is no longer correlated
with y. The part x2 of x which is uncorrelated with y remains entirely unaffected. It
cannot be estimated in terms of y.

The correlation canceler may also be thought of as an optimal signal separator. In-
deed, the output of the processor H is essentially the x1 component of x, whereas the
output e is essentially the x2 component. The separation of x into x1 and x2 is optimal
in the sense that the x1 component of x is removed as much as possible from e.

Next, we discuss the best linear estimator property of the correlation canceler. The
choice H = RxyR−1

yy , which guarantees correlation cancellation, is also the choice that
gives the best estimate of x as a linear function of y in the form x̂ = Hy. It is the best
estimate in the sense that it produces the lowest mean-square estimation error. To see
this, express the covariance matrix of the estimation error in terms of H, as follows:

Ree = E[eeT]= E[
(x−Hy)(xT − yTHT)

] = Rxx −HRyx −RxyHT +HRyyHT (1.4.6)

Minimizing this expression with respect to H yields the optimum choice of H:

Hopt = RxyR−1
yy

with the minimum value for Ree given by:

Rmin
ee = Rxx −RxyR−1

yyRyx



1.4. Correlation Canceling 9

Any other value will result in a larger value for Ree. An alternative way to see this is
to consider a deviation ΔH of H from its optimal value, that is, in (1.4.5) replace H by

H = Hopt +ΔH = RxyR−1
yy +ΔH

Then Eq. (1.4.6) may be expressed in terms of ΔH as follows:

Ree = Rmin
ee +ΔHRyy ΔHT

Since Ryy is positive definite, the second term always represents a nonnegative con-
tribution above the minimum value Rmin

ee , so that
(
Ree −Rmin

ee
)

is positive semi-definite.
In summary, there are three useful ways to think of the correlation canceler:

1. Optimal estimator of x from y.
2. Optimal canceler of that part of x which is correlated with y.
3. Optimal signal separator

The point of view is determined by the application. The first view is typified by
Kalman filtering, channel equalization, and linear prediction applications. The second
view is taken in echo canceling, noise canceling, and sidelobe canceling applications.
The third view is useful in the adaptive line enhancer, which is a method of adaptively
separating a signal into its broadband and narrowband components. All of these appli-
cations are considered later on.

Example 1.4.1: If x and y are jointly gaussian, show that the linear estimate x̂ = Hy is also
the conditional mean E[x|y] of the vector x given the vector y. The conditional mean is
defined in terms of the conditional density p(x|y) of x given y as follows:

E[x|y]=
∫

xp(x|y)dNx

Instead of computing this integral, we will use the results of Examples 1.3.3 and 1.3.4.
The transformation from the jointly gaussian pair (x,y) to the uncorrelated pair (e,y) is
linear: [

e
y

]
=

[
IN −H
0 IM

][
x
y

]

where IN and IM are the unit matrices of dimensions N and M, respectively. Therefore,
Example 1.3.3 implies that the transformed pair (e,y) is also jointly gaussian. Further-
more, since e and y are uncorrelated, it follows from Example 1.3.4 that they must be
independent of each other. The conditional mean of x can be computed by writing

x = x̂+ e = Hy+ e

and noting that if y is given, then Hy is no longer random. Therefore,

E[x|y]= E[
(Hy+ e)|y] = Hy+ E[e|y]

Since e and y are independent, the conditional mean E[e|y] is the same as the uncondi-
tional mean E[e], which is zero by the zero-mean assumption. Thus,

E[x|y]= Hy = RxyR−1
yyy (jointly gaussian x and y) (1.4.7)

Example 1.4.2: Show that the conditional mean E[x|y] is the best unrestricted (i.e., not neces-
sarily linear) estimate of x in the mean-square sense. The best linear estimate was obtained
by seeking the best linear function of y that minimized the error criterion (1.4.6), that is,
we required a priori that the estimate was to be of the form x̂ = Hy. Here, our task is more
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general: find the most general function of y, x̂ = x̂(y), which gives the best estimate of x,
in the sense of producing the lowest mean-squared estimation error e = x− x̂(y),

Ree = E[eeT]= E[(
x− x̂(y)

)(
xT − x̂(y)T

)] = min

The functional dependence of x̂(y) on y is not required to be linear a priori. Usingp(x,y)=
p(x|y)p(y), the above expectation may be written as

Ree =
∫ (

x− x̂(y)
)(

xT − x̂(y)T
)
p(x,y)dNxdMy

=
∫
p(y)dMy

[∫ (
x− x̂(y)

)(
xT − x̂(y)T

)
p(x|y)dNx

]

Since p(y) is nonnegative for all y, it follows that Ree will be minimized when the quantity∫ (
x− x̂(y)

)(
xT − x̂(y)T

)
p(x|y)dNx

is minimized with respect to x̂. But we know from Example 1.3.5 that this quantity is
minimized when x̂ is chosen to be the corresponding mean; here, this is the mean with
respect to the density p(x|y). Thus,

x̂(y)= E[x|y] (1.4.8)

To summarize, we have seen that

x̂ = Hy = RxyR−1
yyy = best linear mean-square estimate of x

x̂ = E[x|y]= best unrestricted mean-square estimate of x

and Example 1.4.1 shows that the two are equal in the case of jointly gaussian vectors
x and y.

The concept of correlation canceling and its application to signal estimation prob-
lems will be discussed in more detail in Chapter 4. The adaptive implementation of
the correlation canceler will be discussed in Chapter 7. In a typical signal processing
application, the processor H would represent a linear filtering operation and the vec-
tors x and y would be blocks of signal samples. The design of such processors requires
knowledge of the quantitiesRxy = E[xyT] andRyy = E[yyT]. How does one determine
these? Basically, applications fall into two classes:

1. Both x and y are available for processing and the objective is to cancel the corre-
lations that may exist between them.

2. Only the signal y is available for processing and the objective is to estimate the
signal x on the basis of y.

In the first class of applications, there exist two basic design approaches:

a. Block processing (off-line) methods. The required correlations Rxy and Ryy are
computed on the basis of two actual blocks of signal samples x and y by replacing
statistical averages by time averages.

b. Adaptive processing (on-line) methods. The quantities Rxy and Ryy are “learned”
gradually as the data x and y become available in real time. The processor H is
continually updated in response to the incoming data, until it reaches its optimal
value.
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Both methods are data adaptive. The first is adaptive on a block-by-block basis,
whereas the second on a sample-by-sample basis. Both methods depend heavily on the
assumption of stationarity. In block processing methods, the replacement of ensemble
averages by time averages is justified by the assumption of ergodicity, which requires
stationarity. The requirement of stationarity can place serious limitations on the allowed
length of the signal blocks x and y.

Similarly, in adaptive processing methods, convergence to the optimal value of the
processorH again requires stationarity. Adaptive methods offer, however, the possibil-
ity of tracking nonstationary changes of the environment, as long as such changes occur
slowly enough to allow convergence between changes. Thus, the issue of the speed of
convergence of adaptation algorithms is an important one.

In the second class of applications where x is not available for processing, one must
have a specific model of the relationship between x and y from which Rxy and Ryy may
be calculated. This is, for example, what is done in Kalman filtering.

Example 1.4.3: As an example of the relationship that might exist between x and y, let

yn = xcn + vn , n = 1,2, . . . ,M

where x and vn are zero-mean, unit-variance, random variables, and cn are known coef-
ficients. It is further assumed that vn are mutually uncorrelated, and also uncorrelated
with x, so that E[vnvm]= δnm, E[xvn]= 0. We would like to determine the optimal linear
estimate (1.4.5) of x, and the corresponding estimation error (1.4.4). In obvious matrix
notation we have y = cx + v, with E[xv]= 0 and E[vvT]= I, where I is the M×M unit
matrix. We find

E[xyT] = E[
x(xc+ v)T

] = cTE[x2]+E[xvT]= cT

E[yyT] = E[
(xc+ v)(xc+ v)T

] = ccTE[x2]+E[vvT]= ccT + I

and therefore, H = E[xyT]E[yyT]−1= cT(I + ccT)−1. Using the matrix inversion lemma
we may write (I + ccT)−1= I − c(1+ cTc)−1cT , so that

H = cT
[
I − c(1+ cTc)−1cT

] = (1+ cTc)−1cT

The optimal estimate of x is then

x̂ = Hy = (1+ cTc)−1cTy (1.4.9)

The corresponding estimation error is computed by

E[e2]= Ree = Rxx −HRyy = 1− (1+ cTc)−1cTc = (1+ cTc)−1

1.5 Gram-Schmidt Orthogonalization

In the previous section, we saw that any random vector x may be decomposed relative to
another vector y into two parts, x = x̂+ e, one part which is correlated with y, and one
which is not. These two parts are uncorrelated with each other since Rex̂ = E[ex̂T]=
E[eyTHT]= E[eyT]HT = 0. In a sense, they are orthogonal to each other. In this
section, we will briefly develop such a geometrical interpretation.

The usefulness of the geometrical approach is threefold: First, it provides a very
simple and intuitive framework in which to formulate and understand signal estimation
problems. Second, through the Gram-Schmidt orthogonalization process, it provides
the basis for making signal models, which find themselves in a variety of signal process-
ing applications, such as speech synthesis, data compression, and modern methods of
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spectrum estimation. Third, again through the Gram-Schmidt construction, by decor-
relating the given set of observations it provides the most convenient basis to work
with, containing no redundancies. Linear estimates expressed in the decorrelated basis
become computationally efficient.

Geometrical ideas may be introduced by thinking of the space of random variables
under consideration as a linear vector space [7]. For example, in the previous section we
dealt with the multicomponent random variables x and y consisting, say, of the random
variables {x1, x2, . . . , xN} and {y1, y2, . . . , yM}, respectively. In this case, the space of
random variables under consideration is the set

{x1, x2, . . . , xN, y1, y2, . . . , yM} (1.5.1)

Since any linear combination of random variables from this set is itself a random
variable, the above set may be enlarged by adjoining to it all such possible linear combi-
nations. This is the linear vector space generated or spanned by the given set of random
variables. The next step is to convert this vector space into an inner-product space (a
Hilbert space) by defining an inner product between any two random variables u and v
as follows:

(u, v)= E[uv] (1.5.2)

With this definition of an inner product, “orthogonal” means “uncorrelated.” The
distance between u and v is defined by the norm ‖u − v‖ induced by the above inner
product:

‖u− v‖2 = E[
(u− v)2] (1.5.3)

Mutually orthogonal (i.e., uncorrelated) random variables may be used to define
orthogonal bases. Consider, for example, M mutually orthogonal random variables
{ε1, ε2, . . . , εM}, such that

(εi, εj)= E[εiεj]= 0 , if i 	= j (1.5.4)

and let Y = {ε1, ε2, . . . , εM} be the linear subspace spanned by these M random vari-
ables. Without loss of generality, we may assume that the εis are linearly independent;
therefore, they form a linearly independent and orthogonal basis for the subspace Y.

One of the standard results on linear vector spaces is the orthogonal decomposition
theorem [8], which in our context may be stated as follows: Any random variable x may
be decomposed uniquely, with respect to a subspace Y, into two mutually orthogonal
parts. One part is parallel to the subspace Y (i.e., it lies in it), and the other is perpen-
dicular to it. That is,

x = x̂+ e with x̂ ∈ Y and e ⊥ Y (1.5.5)

The component x̂ is called the orthogonal projection of x onto the subspace Y. This
decomposition is depicted in Fig. 1.2. The orthogonality condition e ⊥ Y means that e
must be orthogonal to every vector in Y; or equivalently, to every basis vector εi,

(e, εi)= E[eεi]= 0 , i = 1,2, . . . ,M (1.5.6)

Since the component x̂ lies in Y, it may be expanded in terms of the orthogonal basis
in the form

x̂ =
M∑
i=1

aiεi

The coefficients ai can be determined using the orthogonality equations (1.5.6), as
follows,

(x, εi) = (x̂+ e, εi)= (x̂, εi)+(e, εi)= (x̂, εi)

=
⎛⎝ M∑
j=1

ajεj, εi

⎞⎠ = M∑
j=1

aj(εj, εi)= ai(εi, εi)
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Fig. 1.2 Orthogonal decomposition with respect to Y = {ε1, ε2}.

where in the last equality we used Eq. (1.5.4). Thus, ai = (x, εi)(εi, εi)−1. or, ai =
E[xεi]E[εiεi]−1, and we can write Eq. (1.5.5) as

x = x̂+ e =
M∑
i=1

E[xεi]E[εiεi]−1εi + e (1.5.7)

Eq. (1.5.7) may also be written in a compact matrix form by introducing theM-vector,

εεε =

⎡⎢⎢⎢⎢⎢⎣
ε1

ε2

...
εM

⎤⎥⎥⎥⎥⎥⎦
the corresponding cross-correlationM-vector,

E[xεεε]=

⎡⎢⎢⎢⎢⎢⎣
E[xε1]
E[xε2]

...
E[xεM]

⎤⎥⎥⎥⎥⎥⎦
and the correlation matrix Rεε = E[εεεεεεT], which is diagonal because of Eq. (1.5.4):

Rεε = E[εεεεεεT]= diag
{
E[ε2

1], E[ε
2
2], . . . , E[ε

2
M]

}
Then, Eq. (1.5.7) may be written as

x = x̂+ e = E[xεεεT]E[εεεεεεT]−1εεε+ e (1.5.8)

The orthogonality equations (1.5.6) can be written as

Reε = E[eεεεT]= 0 (1.5.9)

Equations (1.5.8) and ( 1.5.9) represent the unique orthogonal decomposition of any
random variable x relative to a linear subspace Y of random variables. If one has a
collection of N random variables {x1, x2, . . . , xN}, then each one may be orthogonally
decomposed with respect to the same subspace Y, giving xi = x̂i + ei, i = 1,2, . . . ,N.
These may be grouped together into a compact matrix form as

x = x̂+ e = E[xεεεT]E[εεεεεεT]−1εεε+ e (1.5.10)

where x stands for the column N-vector x = [x1, x2, . . . , xN]T, and so on. This is iden-
tical to the correlation canceler decomposition of the previous section.
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Next, we briefly discuss the orthogonal projection theorem. In Section 1.4, we noted
the best linear estimator property of the correlation canceler decomposition. The same
result may be understood geometrically by means of the orthogonal projection theorem,
which states: The orthogonal projection x̂ of a vector x onto a linear subspace Y is that
vector inY that lies closest to xwith respect to the distance induced by the inner product
of the vector space.

The theorem is a simple consequence of the orthogonal decomposition theorem and
the Pythagorean theorem. Indeed, let x = x̂+e be the unique orthogonal decomposition
of x with respect to Y, so that x̂ ∈ Y and e ⊥ Y and let y be an arbitrary vector in Y;
noting that (x̂− y)∈ Y and therefore e ⊥ (x̂− y), we have

‖x− y‖2 = ‖(x̂− y)+e‖2 = ‖x̂− y‖2 + ‖e‖2

or, in terms of Eq. (1.5.3),

E
[
(x− y)2] = E[

(x̂− y)2]+ E[e2]

Since the vector y varies over the subspace Y, it follows that the above quantity
will be minimized when y = x̂. In summary, x̂ represents the best approximation of
x that can be made as a linear function of the random variables in Y in the minimum
mean-square sense.

Above, we developed the orthogonal decomposition of a random variable relative to
a linear subspace Y which was generated by means of an orthogonal basis ε1, ε2, . . . , εM.
In practice, the subspace Y is almost always defined by means of a nonorthogonal basis,
such as a collection of random variables

Y = {y1, y2, . . . , yM}

which may be mutually correlated. The subspace Y is defined again as the linear span
of this basis. The Gram-Schmidt orthogonalization process is a recursive procedure of
generating an orthogonal basis {ε1, ε2, . . . , εM} from {y1, y2, . . . , yM}.

The basic idea of the method is this: Initialize the procedure by selecting ε1 = y1.
Next, consider y2 and decompose it relative to ε1. Then, the component of y2 which is
perpendicular to ε1 is selected as ε2, so that (ε1, ε2)= 0. Next, take y3 and decompose it
relative to the subspace spanned by {ε1, ε2} and take the corresponding perpendicular
component to be ε3, and so on. For example, the first three steps of the procedure are

ε1 = y1

ε2 = y2 − E[y2ε1]E[ε1ε1]−1ε1

ε3 = y3 − E[y3ε1]E[ε1ε1]−1ε1 − E[y3ε2]E[ε2ε2]−1ε2
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At the nth iteration step

εn = yn −
n−1∑
i=1

E[ynεi]E[εiεi]−1εi , n = 2,3, . . . ,M (1.5.11)

The basis {ε1, ε2, . . . , εM} generated in this way is orthogonal by construction. The
Gram-Schmidt process may be understood in terms of the hierarchy of subspaces:

Y1 = {ε1} = {y1}
Y2 = {ε1, ε2} = {y1, y2}
Y3 = {ε1, ε2, ε3} = {y1, y2, y3}
...
Yn = {ε1, ε2, . . . , εn} = {y1, y2, . . . , yn}

for n = 1,2, . . . ,M, where each is a subspace of the next one and differs from the next by
the addition of one more basis vector. The second term in Eq. (1.5.11) may be recognized
now as the component of yn parallel to the subspace Yn−1. We may denote this as

ŷn/n−1 =
n−1∑
i=1

E[ynεi]E[εiεi]−1εi (1.5.12)

Then, Eq. (1.5.11) may be written as

εn = yn − ŷn/n−1 or yn = ŷn/n−1 + εn (1.5.13)

which represents the orthogonal decomposition of yn relative to the subspace Yn−1.
Since, the term ŷn/n−1 already lies in Yn−1, we have the direct sum decomposition

Yn = Yn−1 ⊕ {yn} = Yn−1 ⊕ {εn}

Introducing the notation

bni = E[ynεi]E[εiεi]−1 , 1 ≤ i ≤ n− 1 (1.5.14)

and bnn = 1, we may write Eq. (1.5.13) in the form

yn =
n∑
i=1

bniεi = εn +
n−1∑
i=1

bniεi = εn + ŷn/n−1 (1.5.15)

for 1 ≤ n ≤M. And in matrix form,

y = Bεεε , where y =

⎡⎢⎢⎢⎢⎢⎣
y1

y2

...
yM

⎤⎥⎥⎥⎥⎥⎦ , εεε =
⎡⎢⎢⎢⎢⎢⎣
ε1

ε2

...
εM

⎤⎥⎥⎥⎥⎥⎦ (1.5.16)
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and B is a lower-triangular matrix with matrix elements given by (1.5.14). Its main
diagonal is unity. For example, forM = 4 we have⎡⎢⎢⎢⎣

y1

y2

y3

y4

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

1 0 0 0
b21 1 0 0
b31 b32 1 0
b41 b42 b43 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
ε1

ε2

ε3

ε4

⎤⎥⎥⎥⎦
Both the matrix B and its inverse B−1 are unit lower-triangular matrices. The in-

formation contained in the two bases y and εεε is the same. Going from the basis y to
the basis εεε removes all the redundant correlations that may exist in y and “distills” the
essential information contained in y to its most basic form. Because the basis εεε is un-
correlated, every basis vector εi, i = 1,2, . . . ,M will represent something different, or
new. Therefore, the random variables εi are sometimes called the innovations, and the
representation (1.5.16) of y in terms of εεε, the innovations representation.

Since the correlation matrix Rεε = E[εεεεεεT] is diagonal, the transformation (1.5.16)
corresponds to an LU (lower-upper) Cholesky factorization of the correlation matrix of
y, that is,

Ryy = E[yyT]= BE[εεεεεεT]BT = BRεεBT (1.5.17)

We note also the invariance of the projected vector x̂ of Eq. (1.5.10) under such linear
change of basis:

x̂ = E[xεεεT]E[εεεεεεT]−1εεε = E[xyT]E[yyT]−1y (1.5.18)

This shows the equivalence of the orthogonal decompositions (1.5.10) to the corre-
lation canceler decompositions (1.4.1). The computational efficiency of the εεε basis over
the y basis is evident from the fact that the covariance matrix E[εεεεεεT] is diagonal, and
therefore, its inverse is trivially computed. We may also apply the property (1.5.18) to
y itself. Defining the vectors

εεεn−1 =

⎡⎢⎢⎢⎢⎢⎣
ε1

ε2

...
εn−1

⎤⎥⎥⎥⎥⎥⎦ yn−1 =

⎡⎢⎢⎢⎢⎢⎣
y1

y2

...
yn−1

⎤⎥⎥⎥⎥⎥⎦
we may write the projection ŷn/n−1 of yn on the subspace Yn−1 given by Eq. (1.5.12) as
follows:

ŷn/n−1 = E[ynεεεTn−1]E[εεεn−1εεεTn−1]−1εεεn−1 = E[ynyTn−1]E[yn−1yTn−1]−1yn−1 (1.5.19)

Eq. (1.5.13) is then written as

εn = yn − ŷn/n−1 = yn − E[ynyTn−1]E[yn−1yTn−1]−1yn−1 (1.5.20)

which provides a construction of εn directly in terms of the yns. We note that the
quantity ŷn/n−1 is also the best linear estimate of yn that can be made on the basis of
the previous yns, Yn−1 = {y1, y2, . . . , yn−1}. If the index n represents the time index, as
it does for random signals, then ŷn/n−1 is the best linear prediction of yn on the basis
of its past; and εn is the corresponding prediction error.

The Gram-Schmidt process was started with the first element y1 of y and proceeded
forward to yM. The process can just as well be started with yM and proceed backward to
y1 (see Problem 1.16). It may be interpreted as backward prediction, or postdiction, and
leads to the UL (rather than LU) factorization of the covariance matrixRyy. In Section 1.7,
we study the properties of such forward and backward orthogonalization procedures in
some detail.
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Example 1.5.1: Consider the three zero-mean random variables {y1, y2, y3} and letRij = E[yiyj]
for i, j = 1,2,3, denote their correlation matrix. Then, the explicit construction indicated
in Eq. (1.5.20) can be carried out as follows. The required vectors yn−1 are:

y1 = [y1] , y2 =
[
y1

y2

]

and hence
E[y2yT1 ] = E[y2y1]= R21

E[y1yT1 ] = E[y1y1]= R11

E[y3yT2 ] = E
[
y3[y1, y2]

] = [R31, R32]

E[y2yT2 ] = E
[[
y1

y2

]
[y1, y2]

]
=

[
R11 R12

R21 R22

]
Therefore, Eq. (1.5.20) becomes

ε1 = y1

ε2 = y2 − ŷ2/1 = y2 −R21R−1
11 y1

ε3 = y3 − ŷ3/2 = y3 − [R31, R32]
[
R11 R12

R21 R22

]−1 [
y1

y2

]

Example 1.5.2: The zero-mean random vector y = [y1, y2, y3]T has covariance matrix

Ryy =
⎡⎢⎣ 1 −1 1
−1 3 3

1 3 12

⎤⎥⎦
Determine the innovations representation of y in two ways: using the Gram- Schmidt
construction and using the results of Example 1.5.1.

Solution: Starting with ε1 = y1, we find E[y2ε1]= R21 = −1 and E[ε2
1]= R11 = 1. Therefore,

ε2 = y2 − E[y2ε1]E[ε2
1]−1ε1 = y2 + ε1 = y2 + y1

with a mean-square value E[ε2
2]= E[y2

2]+2E[y2y1]+E[y2
1]= 3− 2+ 1 = 2. Similarly, we

find E[y3ε1]= R31 = 1 and

E[y3ε2]= E
[
y3(y2 + y1)

] = R32 +R31 = 3+ 1 = 4

Thus,

ε3 = y3 − E[y3ε1]E[ε1ε1]−1ε1 − E[y3ε2]E[ε2ε2]−1ε2 = y3 − ε1 − 2ε2

or,
ε3 = y3 − y1 − 2(y2 + y1)= y3 − 2y2 − 3y1

Solving for the ys and writing the answer in matrix form we have

y =
⎡⎢⎣ y1

y2

y3

⎤⎥⎦ =
⎡⎢⎣ 1 0 0
−1 1 0

1 2 1

⎤⎥⎦
⎡⎢⎣ ε1

ε2

ε3

⎤⎥⎦ = Bεεε
The last row determines E[ε2

3]. Using the mutual orthogonality of the εis, we have

E[y2
3]= E

[
(ε3 + 2ε2 + ε1)2

] = E[ε2
3]+4E[ε2

2]+E[ε2
1] ⇒ 12 = E[ε2

3]+8+ 1

which gives E[y2
3]= 3. Using the results of Example 1.5.1, we have

ε3 = y3 − [R31, R32]
[
R11 R12

R21 R22

]−1 [
y1

y2

]
= y3 − [1,3]

[
1 −1
−1 3

]−1 [
y1

y2

]

The indicated matrix operations are computed easily and lead to the same expression for
ε3 found above. ��
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The innovations representation Eq. (1.5.16) and the Cholesky factorization (1.5.17)
are also very useful for the purpose of simulating a random vector having a prescribed
covariance matrix. The procedure is as follows: given R = E[yyT], find its Cholesky
factor B and the diagonal matrix Rεε; then, using any standard random number genera-
tor, generate M independent random numbers εεε = [ε1, ε2, . . . , εM]T of mean zero and
variances equal to the diagonal entries of Rεε, and perform the matrix operation y = Bεεε
to obtain a realization of the random vector y.

Conversely, if a number of independent realizations of y are available, {y1,y2, . . . ,yN},
we may form an estimate of the covariance matrix by the following expression, referred
to as the sample covariance matrix

R̂ = 1

N

N∑
n=1

ynyTn (1.5.21)

Example 1.5.3: In typical array processing applications, a linear array of, say,M equally spaced
sensors measures the incident radiation field. This field may consist of a number of plane
waves incident from different angles on the array plus background noise. The objective is
to determine the number, angles of arrival, and strengths of the incident plane waves from
measurements of the field at the sensor elements. At each time instant, the measurements
at the M sensors may be assembled into the M-dimensional random vector y, called an
instantaneous snapshot. Thus, the correlation matrix R = E[yyT] measures the correla-
tions that exist among sensors, that is, spatial correlations. In Chapter 6, we will consider
methods of extracting the angle-of-arrival information from the covariance matrix R. Most
of these methods require an estimate of the covariance matrix, which is typically given by
Eq. (1.5.21) on the basis of N snapshots. ��

How good an estimate of R is R̂? First, note that it is an unbiased estimate:

E[R̂]= 1

N

N∑
n=1

E[ynyTn]=
1

N
(NR)= R

Second, we show that it is consistent. The correlation between the various matrix
elements of R̂ is obtained as follows:

E[R̂ijR̂kl]= 1

N2

N∑
n=1

N∑
m=1

E[yniynjymkyml]

where yni is the ith component of the nth vector yn. To get a simple expression for
the covariance of R̂, we will assume that yn, n = 1,2, . . . ,N are independent zero-mean
gaussian random vectors of covariance matrix R. This implies that [4,5]

E[yniynjymkyml]= RijRkl + δnm(RikRjl +RilRjk)

It follows that

E[R̂ijR̂kl]= RijRjk + 1

N
(RikRjl +RilRjk) (1.5.22)

Writing ΔR = R̂− E[R̂]= R̂−R, we obtain for the covariance

E[ΔRijΔRkl]= 1

N
(RikRjl +RilRjk) (1.5.23)

Thus, R̂ is a consistent estimator. The result of Eq. (1.5.23) is typical of the asymp-
totic results that are available in the statistical literature [4,5]. It will be used in Chapter 6
to obtain asymptotic results for linear prediction parameters and for the eigenstructure
methods of spectrum estimation.
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The sample covariance matrix (1.5.21) may also be written in an adaptive, or recursive
form,

R̂N = 1

N

N∑
n=1

ynyTn =
1

N

⎡⎣N−1∑
n=1

ynyTn + yNyTN

⎤⎦ = 1

N
[
(N − 1)R̂N−1 + yNyTN

]
where we wrote R̂N to explicitly indicate the dependence on N. A more intuitive way of
writing this recursion is in the “predictor/corrector” form

R̂N = R̂N−1 + 1

N
(yNyTN − R̂N−1) (1.5.24)

The term R̂N−1 may be thought of as a prediction of R based onN−1 observations,
the Nth observation yNyTN may be thought of as an instantaneous estimate of R, and
the term in the parenthesis as the prediction error that is used to correct the prediction.
The routine sampcov (see Appendix B) takes as input the old matrix R̂N−1, and the new
observation yN, and outputs the updated matrix R̂N, overwriting the old one.

Example 1.5.4: Consider the 3×3 random vector y defined in Example 1.5.2. Using the inno-
vations representation of y, generate N = 200 independent vectors yn, n = 1,2, . . . ,N
and then compute the estimated sample covariance matrix (1.5.21) and compare it with
the theoretical R. Compute the sample covariance matrix R̂ recursively and plot its matrix
elements as functions of the iteration number N.

Solution: Generate N independent 3-vectors εεεn, and compute yn = Bεεεn. The estimated and
theoretical covariance matrices are

R̂ =
⎡⎢⎣ 0.995 −1.090 0.880
−1.090 3.102 2.858

0.880 2.858 11.457

⎤⎥⎦ , R =
⎡⎢⎣ 1 −1 1
−1 3 3

1 3 12

⎤⎥⎦
Can we claim that this is a good estimate of R? Yes, because the deviations from R are
consistent with the expected deviations given by Eq. (1.5.23). The standard deviation of
the ijth matrix element is

δRij =
√
E
[
(ΔRij)2

] = √
(RiiRjj +R2

ij)/N

The estimated values R̂ij fall within the intervals Rij − δRij ≤ R̂ij ≤ Rij + δRij, as can be
verified by inspecting the matrices

R− δR =
⎡⎢⎣ 0.901 −1.146 0.754
−1.146 2.691 2.534

0.754 2.534 10.857

⎤⎥⎦ , R+ δR =
⎡⎢⎣ 1.099 −0.854 1.246
−0.854 3.309 3.466

1.246 3.466 13.143

⎤⎥⎦
The recursive computation Eq. (1.5.24), implemented by successive calls to the routine
sampcov, is shown in Fig. 1.3, where only the matrix elementsR11, R12, andR22 are plotted
versusN. Such graphs give us a better idea of how fast the sample estimate R̂N converges
to the theoretical R. ��

1.6 Partial Correlations

A concept intimately connected to the Gram-Schmidt orthogonalization is that of the
partial correlation. It plays a central role in linear prediction applications.

Consider the Gram-Schmidt orthogonalization of a random vector y in the form y =
Bεεε, where B is a unit lower-triangular matrix, and εεε is a vector of mutually uncorrelated
components. Inverting, we have
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Fig. 1.3 Recursive computation of the sample covariance matrix.

εεε = Ay (1.6.1)

where A = B−1. Now, suppose the vector y is arbitrarily subdivided into three subvec-
tors as follows:

y =
⎡⎢⎣ y0

y1

y2

⎤⎥⎦
where y0,y1,y2 do not necessarily have the same dimension. Then, the matrix equation
(1.6.1) may also be decomposed in a block-compatible form:⎡⎢⎣ εεε0

εεε1

εεε2

⎤⎥⎦ =
⎡⎢⎣A00 0 0
A11 A10 0
A22 A21 A20

⎤⎥⎦
⎡⎢⎣ y0

y1

y2

⎤⎥⎦ (1.6.2)

whereA00,A10,A20 are unit lower-triangular matrices. Since y has components that are
generally correlated with each other, it follows that y0 will be correlated with y1, and
y1 will be correlated with y2. Thus, through the intermediate action of y1, the vector
y0 will be indirectly coupled with the vector y2. The question we would like to ask is
this: Suppose the effect of the intermediate vector y1 were to be removed, then what
would be the correlation that is left between y0 and y2? This is the partial correlation.
It represents the “true” or “direct” influence of y0 on y2, when the indirect influence via
y1 is removed. To remove the effect of y1, we project both y0 and y2 on the subspace
spanned by y1 and then subtract these parts from both, that is, let

e0 = y0 − (projection of y0 on y1)

e2 = y2 − (projection of y2 on y1)

or,
e0 = y0 −R01R−1

11 y1

e2 = y2 −R21R−1
11 y1

(1.6.3)

where we defined Rij = E[yiyTj ], for i, j = 0,1,2. We define the partial correlation
(PARCOR) coefficient between y0 and y2, with the effect of the intermediate y1 removed,
as follows:

Γ = E[e2eT0 ]E[e0eT0 ]−1 (1.6.4)



1.6. Partial Correlations 21

Then, Γ may be expressed in terms of the entries of the matrix A as follows:

Γ = −A−1
20A22 (1.6.5)

To prove this result, we consider the last equation of (1.6.2):

εεε2 = A22y0 +A21y1 +A20y2 (1.6.6)

By construction, εεε2 is orthogonal to y1, so that E[εεε2yT1 ]= 0. Thus we obtain the
relationship:

E[εεε2yT1 ] = A22E[y0yT1 ]+A21E[y1yT1 ]+A20E[y2yT1 ]

= A22R01 +A21R11 +A20R21 = 0
(1.6.7)

Using Eqs. (1.6.3) and (1.6.7), we may express εεε2 in terms of e0 and e2, as follows:

εεε2 = A22(e0 +R01R−1
11 y1)+A21y1 +A20(e2 +R21R−1

11 y1)

= A22e0 +A20e2 + (A22R01 +A21R11 +A20R21)R−1
11 y1

= A22e0 +A20e2

(1.6.8)

Now, by construction, εεε2 is orthogonal to both y0 and y1, and hence also to e0, that
is, E[εεε2eT0 ]= 0. Using Eq. (1.6.8) we obtain

E[εεε2eT0 ]= A22E[e0eT0 ]+A20E[e2eT0 ]= 0

from which (1.6.5) follows. It is interesting also to note that (1.6.8) may be written as

εεε2 = A20e

where e = e2 − Γe0 is the orthogonal complement of e2 relative to e0.

Example 1.6.1: An important special case of Eq. (1.6.5) is when y0 and y2 are selected as the first
and last components of y, and therefore y1 consists of all the intermediate components.
For example, suppose y = [y0, y1, y2, y3, y4]T . Then, the decomposition (1.6.2) can be
written as follows: ⎡⎢⎢⎢⎢⎢⎢⎣

ε0

ε1

ε2

ε3

ε4

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0

a11 1 0 0 0
a22 a21 1 0 0
a33 a32 a31 1 0

a44 a43 a42 a41 1

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
y0

y1

y2

y3

y4

⎤⎥⎥⎥⎥⎥⎥⎦ (1.6.9)

where y0,y1,y2 are chosen as the vectors

y0 = [y0] , y1 =
⎡⎢⎣ y1

y2

y3

⎤⎥⎦ , y2 = [y4]

The matrices A20 and A22 are in this case the scalars A20 = [1] and A22 = [a44]. There-
fore, the corresponding PARCOR coefficient (1.6.5) is

Γ = −a44

Clearly, the first column [1, a11, a22, a33, a44] of A contains all the lower order PARCOR
coefficients, that is, the quantity

γp = −app , p = 1,2,3,4

represents the partial correlation coefficient between y0 and yp, with the effect of all the
intermediate variables y1, y2, . . . , yp−1 removed. ��
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We note the backward indexing of the entries of the matrix A in Eqs. (1.6.2) and
(1.6.9). It corresponds to writing εn in a convolutional form

εn =
n∑
i=0

aniyn−i =
n∑
i=0

an,n−iyi = yn + an1yn−1 + an2yn−2 + · · · + anny0 (1.6.10)

and conforms to standard notation in linear prediction applications. Comparing (1.6.10)
with (1.5.13), we note that the projection of yn onto the subspace Yn−1 may also be
expressed directly in terms of the correlated basis Yn−1 = {y0, y1, . . . , yn−1} as follows:

ŷn/n−1 = −
[
an1yn−1 + an2yn−2 + · · · + anny0

]
(1.6.11)

An alternative expression was given in Eq. (1.5.19). Writing Eq. (1.6.10) in vector
form, we have

εn = [ann, . . . , an1,1]

⎡⎢⎢⎢⎢⎢⎣
y0

...
yn−1

yn

⎤⎥⎥⎥⎥⎥⎦ = [1, an1, . . . , ann]

⎡⎢⎢⎢⎢⎢⎣
yn
yn−1

...
y0

⎤⎥⎥⎥⎥⎥⎦ (1.6.12)

Thus, there are two possible definitions for the data vector y and corresponding
weight vector a. According to the first definition—which is what we used in Eqs. (1.6.1)
and (1.6.9)—the vector y is indexed from the lowest to the highest index and the vector a
is indexed in the reverse way. According to the second definition, y and a are exactly the
reverse, or upside-down, versions of the first definition, namely, y is indexed backward
from high to low, whereas a is indexed forward. If we use the second definition and
write Eq. (1.6.12) in matrix form, we obtain the reverse of Eq. (1.6.9), that is

εεεrev =

⎡⎢⎢⎢⎢⎢⎢⎣
ε4

ε3

ε2

ε1

ε0

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣

1 a41 a42 a43 a44

0 1 a31 a32 a33

0 0 1 a21 a22

0 0 0 1 a11

0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
y4

y3

y2

y1

y0

⎤⎥⎥⎥⎥⎥⎥⎦ = Uyrev (1.6.13)

Thus, the transformation between the correlated and decorrelated bases is now by
means of a unit upper-triangular matrixU. It corresponds to the UL (rather than LU) fac-
torization of the covariance matrix of the reversed vector yrev. WritingRrev = E[yrevyTrev]
and Drev = E[εεεrevεεεTrev], it follows from Eq. (1.6.13) that

Drev = URrevUT (1.6.14)

The precise connection between the original basis and its reverse, and between their
respective Cholesky factorizations, can be seen as follows. The operation of reversing
a vector is equivalent to a linear transformation by the so-called reversing matrix J,
consisting of ones along its antidiagonal and zeros everywhere else; for example, in the
5×5 case of Example 1.6.1,

J =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
The reversed vectors will be yrev = Jy and εεεrev = Jεεε. Using the property J = JT, it

follows that Rrev = JRyyJ and Drev = JRεεJ. Comparing Eq. (1.6.9) and Eq. (1.6.13) and
using the property J2 = I, we find,

εεεrev = Jεεε = JAy = (JAJ)(Jy)= (JAJ)yrev , or,
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U = JAJ (1.6.15)

Note that J acting on a matrix from the left reverses each column, whereas acting
from the right, it reverses each row. Thus, U is obtained from A by reversing all its
columns and then all its rows. Regardless of the choice of the vector y, the Gram-
Schmidt construction proceeds from the lowest to the highest index of y, and therefore,
it can be interpreted as predicting the present from the past. But whether this process
leads to LU or UL factorization depends on whether y or its reverse is used as the basis.
Of course, the choice of basis does not affect the computation of linear estimates. As
we saw in Eq. (1.5.18), linear estimates are invariant under any linear change of basis; in
particular,

x̂ = E[xyT]E[yyT]−1y = E[xyTrev]E[yrevyTrev]−1yrev

In this book, we use both representations y and yrev, whichever is the most conve-
nient depending on the context and application. For example, in discussing the classical
Wiener filtering problem and Kalman filtering in Chapter 4, we find the basis y more
natural. On the other hand, the basis yrev is more appropriate for discussing the lattice
and direct-form realizations of FIR Wiener filters.

The ideas discussed in the last three sections are basic in the development of opti-
mum signal processing algorithms, and will be pursued further in subsequent chapters.
However, taking a brief look ahead, we point out how some of these concepts fit into
the signal processing context:

1. The correlation canceling/orthogonal decompositions of Eqs. (1.4.1) and (1.5.10)
for the basis of optimum Wiener and Kalman filtering.

2. The Gram-Schmidt process expressed by Eqs. (1.5.13) and (1.5.20) forms the basis
of linear prediction and is also used in the development of the Kalman filter.

3. The representation y = Bεεε may be thought of as a signal model for synthesizing
y by processing the uncorrelated (white noise) vector εεε through the linear filter
B. The lower-triangular nature of B is equivalent to causality. Such signal models
have a very broad range of applications, among which are speech synthesis and
modern methods of spectrum estimation.

4. The inverse representation εεε = Ay of Eqs. (1.6.1) and (1.6.10) corresponds to the
analysis filters of linear prediction. The PARCOR coefficients will turn out to be
the reflection coefficients of the lattice filter realizations of linear prediction.

5. The Cholesky factorization (1.5.17) is the matrix analog of the spectral factor-
ization theorem. It not only facilitates the solution of optimum Wiener filtering
problems, but also the making of signal models of the type of Eq. (1.5.16).

1.7 Forward/Backward Prediction and LU/UL Factorization

The Gram-Schmidt orthogonalization procedure discussed in the previous sections was
a forward procedure in the sense that the successive orthogonalization of the compo-
nents of a random vector y proceeded forward from the first component to the last. It
was given a linear prediction interpretation, that is, at each orthogonalization step, a
prediction of the present component of y is made in terms of all the past ones. The
procedure was seen to be mathematically equivalent to the LU Cholesky factorization of
the covariance matrix R = E[yyT] (or, the UL factorization with respect to the reversed
basis). We remarked in Section 1.5 (see also Problem 1.16) that if the Gram-Schmidt con-
struction is started at the other end of the random vector y then the UL factorization of
R is obtained (equivalently, the LU factorization in the reversed basis).

In this section, we discuss in detail such forward and backward Gram-Schmidt con-
structions and their relationship to forward and backward linear prediction and to LU
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and UL Cholesky factorizations, and show how to realize linear estimators in the forward
and backward orthogonal bases.

Our main objective is to gain further insight into the properties of the basis of ob-
servations y and to provide a preliminary introduction to a large number of concepts
and methods that have become standard tools in modern signal processing practice,
namely, Levinson’s and Schur’s algorithms; fast Cholesky factorizations; lattice filters
for linear prediction; lattice realizations of FIR Wiener filters; and fast recursive least
squares adaptive algorithms. Although these concepts are fully developed in Chapters
5 and 7, we would like to show in this preliminary discussion how far one can go to-
ward these goals without making any assumptions about any structural properties of
the covariance matrix R, such as Toeplitz and stationarity properties, or the so-called
shift-invariance property of adaptive least squares problems.

Forward/Backward Normal Equations

Let y = [ya, . . . , yb]T be a random vector whose first and last components are ya and
yb. Let ŷb be the best linear estimate of yb based on the rest of the vector y, that is,

ŷb = E[ybȳT]E[ȳ ȳT]−1ȳ (1.7.1)

where ȳ is the upper part of y, namely,

y =

⎡⎢⎢⎣
ya
...
yb

⎤⎥⎥⎦ =
[

ȳ
yb

]
(1.7.2)

Similarly, let ŷa be the best estimate of ya based on the rest of y, namely,

ŷa = E[yaỹT]E[ỹỹT]−1ỹ (1.7.3)

where ỹ is the lower part of y, that is,

y =

⎡⎢⎢⎣
ya
...
yb

⎤⎥⎥⎦ =
[
ya
ỹ

]
(1.7.4)

The decompositions (1.7.2) and (1.7.4) imply analogous decompositions of the co-
variance matrix R = E[yyT] as follows

R =
[
R̄ rb
rTb ρb

]
=

[
ρa rTa
ra R̃

]
(1.7.5)

where
R̃ = E[ỹỹT] , ra = E[yaỹ] , ρa = E[y2

a]

R̄ = E[ȳ ȳT] , rb = E[ybȳ] , ρb = E[y2
b]

(1.7.6)

We will refer to ŷa and ŷb as the forward and backward predictors, respectively. Since
we have not yet introduced any notion of time in our discussion of random vectors, we
will employ the terms forward and backward as convenient ways of referring to the
above two estimates. In the present section, the basis y will be chosen according to the
reversed-basis convention. As discussed in Section 1.6, LU becomes UL factorization in
the reversed basis. By the same token, UL becomes LU factorization. Therefore, the term
forward will be associated with UL and the term backward with LU factorization. The
motivation for the choice of basis arises from the time series case, where the consistent
usage of these two terms requires that y be reverse-indexed from high to low indices. For
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example, a typical choice of y, relevant in the context ofMth order FIR Wiener filtering
problems, is

y =

⎡⎢⎢⎢⎢⎢⎣
yn
yn−1

...
yn−M

⎤⎥⎥⎥⎥⎥⎦
where n represents the time index. Therefore, estimating the first element, yn, from
the rest of y will be equivalent to prediction, and estimating the last element, yn−M,
from the rest of y will be equivalent to postdiction. Next, we introduce the forward and
backward prediction coefficients by

a =
[

1
ααα

]
, b =

[
βββ
1

]
, where ααα = −R̃−1ra , βββ = −R̄−1rb (1.7.7)

In this notation, the predictors (1.7.1) and (1.7.3) are written as

ŷa = −αααTỹ , ŷb = −βββTȳ (1.7.8)

The corresponding prediction errors are

ea = ya − ŷa = ya +αααTỹ = aTy , eb = yb − ŷb = yb +βββTȳ = bTy (1.7.9)

with mean square values

Ea = E[e2
a]= E

[
(aTy)(yTa)

] = aTRa

Eb = E[e2
b]= E

[
(bTy)(yTb)

] = bTRb
(1.7.10)

Because the estimation errors are orthogonal to the observations that make up the
estimates, that is, E[ebȳ]= 0 and E[eaỹ]= 0, it follows that E[ŷaea]= 0 and E[ŷbeb]=
0. Therefore, we can write E[e2

a]= E[yaea] and E[e2
b]= E[ybeb]. Thus, the minimized

values of the prediction errors (1.7.10) can be written as

Ea = E[yaea]= E
[
ya(ya +αααTỹ)

] = ρa +αααTra = ρa − rTa R̃−1ra

Eb = E[ybeb]= E
[
yb(yb +βββTȳ)

] = ρb +βββTrb = ρb − rTb R̄
−1rb

(1.7.11)

By construction, the mean square estimation errors are positive quantities. This
also follows from the positivity of the covariance matrix R. With respect to the block
decompositions (1.7.5), it is easily shown that a necessary and sufficient condition for R
to be positive definite is that R̄ be positive definite and ρb − rTb R̄−1rb > 0; alternatively,
that R̃ be positive definite and ρa − rTa R̃−1ra > 0.

Equations (1.7.7) and (1.7.11) may be combined now into the more compact forms,
referred to as the forward and backward normal equations of linear prediction,

Ra = Eau , Rb = Ebv , where u =
[

1
0

]
, v =

[
0
1

]
(1.7.12)

For example,

Rb =
[
R̄ rb
rTb ρb

][
βββ
1

]
=

[
R̄βββ+ rb
rTbβββ+ ρb

]
=

[
0
Eb

]
= Ebv

and similarly,

Ra =
[
ρa rTa
ra R̃

][
1
ααα

]
=

[
ρa + rTaααα
ra + R̃ααα

]
=

[
Ea
0

]
= Eau
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Backward Prediction and LU Factorization

Next, we discuss the connection of the forward and backward predictors to the Gram-
Schmidt procedure and to the Cholesky factorizations of the covariance matrix R. Con-
sider an arbitrary unit lower triangular matrix L̄ of the same dimension as R̄ and form
the larger unit lower triangular matrix whose bottom row is bT = [βββT,1]

L =
[
L̄ 0
βββT 1

]
(1.7.13)

Then, it follows from Eq. (1.7.12) that

LRLT =
[
L̄R̄L̄T 0

0T Eb

]
(1.7.14)

Indeed, we have

LRLT =
[
L̄ 0
βββT 1

][
R̄ rb
rTb ρb

]
LT =

[
L̄R̄ L̄rb

βββTR̄+ rTb βββTrb + ρb

]
LT =

[
L̄R̄ L̄rb
0T Eb

]
LT

=
[
L̄R̄L̄T L̄rb + L̄R̄βββ

0T Eb

]
=

[
L̄R̄L̄T 0

0T Eb

]

Defining the transformed random vector eb = Ly, we have

eb = Ly =
[
L̄ 0
βββT 1

][
ȳ
yb

]
=

[
L̄ȳ

βββTȳ+ yb

]
=

[
ēb
eb

]
(1.7.15)

where ēb = L̄ȳ. It follows that LRLT is the covariance matrix of the transformed vector
eb. The significance of Eq. (1.7.14) is that by replacing the y basis by eb we have achieved
partial decorrelation of the random vector y. The new basis eb is better to work with
because it contains less redundancy than y. For example, choosing L̄ to be the identity
matrix, L̄ = Ī, Eqs. (1.7.14) and (1.7.15) become

LRLT =
[
R̄ 0
0T Eb

]
, eb =

[
ȳ
eb

]
(1.7.16)

This represents the direct sum decomposition of the subspace spanned by y into
the subspace spanned by ȳ and an orthogonal part spanned by eb, that is,

{y} = {ȳ, yb} = {ȳ} ⊕ {eb}

The advantage of the new basis may be appreciated by considering the estimation
of a random variable x in terms of y. The estimate x̂ may be expressed either in the y
basis, or in the new basis eb by

x̂ = E[xyT]E[yyT]−1y = E[x eTb]E[ebe
T
b]
−1eb

Using the orthogonality between ȳ and eb, or the block-diagonal property of the
covariance matrix of eb given by Eq. (1.7.16), we find

x̂ = E[xȳT]E[ȳȳT]−1ȳ+ E[xeb]E[e2
b]
−1eb = x̄+ x̂b
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The two terms in x̂ are recognized as the estimates of x based on the two orthogonal
parts of the y basis. The first term still requires the computation of a matrix inverse,
namely, R̄−1 = E[ȳȳT]−1, but the order of the matrix is reduced by one as compared
with the original covariance matrix R. The same order-reduction procedure can now
be applied to R̄ itself, thereby reducing its order by one. And so on, by repeating the
order-reduction procedure, the original matrix R can be completely diagonalized. This
process is equivalent to performing Gram-Schmidt orthogonalization on y starting with
ya and ending with yb. It is also equivalent to choosing L̄ to correspond to the LU
Cholesky factorization of R̄. Then, the matrix L will correspond to the LU factorization
of R. Indeed, if L̄ is such that L̄R̄L̄T = D̄b, that is, a diagonal matrix, then

LRLT =
[
L̄R̄L̄T 0

0T Eb

]
=

[
D̄b 0
0T Eb

]
= Db (1.7.17)

will itself be diagonal. The basis eb = Ly will be completely decorrelated, having diago-
nal covariance matrix E[ebeTb]= Db. Thus, by successively solving backward prediction
problems of lower and lower order we eventually orthogonalize the original basis y and
obtain the LU factorization of its covariance matrix. By construction, the bottom row
of L is the backward predictor bT. Similarly, the bottom row of L̄ will be the backward
predictor of order one less, and so on. In other words, the rows of L are simply the
backward predictors of successive orders. The overall construction of L is illustrated by
the following example.

Example 1.7.1: The random vector y = [ya, yc, yb]T has covariance matrix

R =
⎡⎢⎣ 1 1 0

1 3 2
0 2 3

⎤⎥⎦
By successively solving backward prediction problems of lower and lower order construct
the LU factorization of R.

Solution: The backward prediction coefficients for predicting yb are given by Eq. (1.7.7):

βββ = −R̄−1rb = −
[

1 1
1 3

]−1 [
0
2

]
= −1

2

[
3 −1
−1 1

][
0
2

]
=

[
1
−1

]

Thus, bT = [βββT,1]= [1,−1,1]. The estimation error is given by Eq. (1.7.11):

Eb = ρb +βββTrb = 3+ [1,−1]
[

0
2

]
= 1

Repeating the procedure on R̄ =
[

1 1
1 3

]
, we find for the corresponding backward pre-

diction coefficients, satisfying R̄b̄ = Ēbv̄, v̄ = [0,1]T

β̄ββ = −[1]−1[1]= [−1] , b̄
T = [β̄ββT,1]= [−1,1]

and Ēb = ρ̄b+β̄ββT r̄b = 3−1×1 = 2. The rows of L are the backward predictor coefficients,
and the diagonal entries of Db are the Eb. Thus,

L =
⎡⎢⎣ 1 0 0
−1 1 0

1 −1 1

⎤⎥⎦ , Db =
⎡⎢⎣ 1 0 0

0 2 0
0 0 1

⎤⎥⎦
It is easily verified that LRLT = Db. Note that the first entry of Db is always equal to ρa.
Next, we obtain the same results by carrying out the Gram-Schmidt construction starting
at ya and ending with yb. Starting with ε1 = ya and E[ε2

1]= 1, define

ε2 = yc − E[ycε1]E[ε2
1]−1ε1 = yc − ya
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having E[ε2
2]= E[y2

c]−2E[ycya]+E[y2
a]= 2. Thus, the ēb portion of the Gram-Schmidt

construction will be

ēb =
[
ε1

ε2

]
=

[
1 0
−1 1

][
ya
yc

]
= L̄ȳ

The last step of the Gram-Schmidt construction is

eb = yb − E[ybε1]E[ε2
1]−1ε1 − E[ybε2]E[ε2

2]−1ε2 = yb − (yc − ya)= ya − yc + yb

giving for the last row of L, bT = [1,−1,1]. In the above step, we used

E[ybε2]= E
[
yb(yc − ya)

] = E[ybyc]−E[ybya]= 2− 0 = 2

and E[ybε1]= E[ybya]= 0. ��

Linear Estimation in the Backward Basis

Equation (1.7.17) may be written in the form

R = L−1DbL−T (1.7.18)

where L−T is the inverse of the transpose of L. Thus, L−1 and L−T correspond to the con-
ventional LU Cholesky factors of R. The computational advantage of this form becomes
immediately obvious when we consider the inverse of R,

R−1 = LTD−1
b L (1.7.19)

which shows that R−1 can be computed without any matrix inversion (the inverse of the
diagonal matrix Db is trivial). The design of linear estimators is simplified considerably
in the eb basis. The estimate of x is

x̂ = hTy (1.7.20)

where h = E[yyT]−1E[xy]≡ R−1r. Writing y = L−1eb and defining a new vector of
estimation weights by g = L−Th, we can rewrite Eq. (1.7.20) as

x̂ = hTy = gTeb (1.7.21)

The block diagram representations of the two realizations are shown below:

There are three major advantages of the representation of Eq. (1.7.21) over Eq. (1.7.20).
First, to get the estimate x̂ using (1.7.20), the processor has to linearly combine a lot of
redundant information because the y basis is correlated, whereas the processor (1.7.21)
linearly combines only the non-redundant part of the same information. This has im-
portant implications for the adaptive implementations of such processors. An adap-
tive processor that uses the representation (1.7.20) will tend to be slow in learning the
statistics of the data vector y because it has to process all the redundancies in the data.
Moreover, the more the redundancies, or equivalently, the higher the correlations in the
data y, the slower the speed of adaptation. On the other hand, an adaptive processor
based on (1.7.21) should adapt very quickly. The preprocessing operation, eb = Ly,
that decorrelates the data vector y can also be implemented adaptively. In time series
applications, it is conveniently realized by means of a lattice structure. In adaptive array
applications, it gives rise to the so-called Gram-Schmidt preprocessor implementations.
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Second, the computation of g can be done efficiently without any matrix inversion.
Given the LU factors of R as in Eq. (1.7.19) and the cross correlation vector r, we may
compute g by

g = L−Th = L−TR−1r = L−T(LTD−1
b L)r = D−1

b Lr (1.7.22)

If so desired, the original weights h may be recovered from g by

h = LTg (1.7.23)

The third advantage of the form Eq. (1.7.21) is that any lower-order portion of the
weight vector g is already optimal for that order. Thus, the order of the estimator can
be increased without having to redesign the lower-order portions of it. Recognizing that
Lr = LE[xy]= E[x eb], we write Eq. (1.7.22) as

g = D−1
b E[x eb]=

[
D̄−1
b E[x ēb]
E−1
b E[xeb]

]
≡

[
ḡ
g

]

where we used the diagonal nature of Db given in Eq. (1.7.17) and the decomposition
(1.7.15). The estimate (1.7.21) can be written as

x̂ = gTeb = [ḡT, g]
[

ēb
eb

]
= ḡTēb + geb ≡ x̄+ x̂b (1.7.24)

It is clear that the two terms

x̄ = ḡTēb = E[x ēTb]D̄
−1
b ēb , x̂b = geb = E[xeb]E[e2

b]
−1eb (1.7.25)

are the optimal estimates of x based on the two orthogonal parts of the subspace of
observations, namely,

{y} = {ȳ} ⊕ {eb} , or, {eb} = {ēb} ⊕ {eb}

The first term, x̄, is the same estimate of x based on ȳ that we considered earlier but
now it is expressed in the diagonal basis ēb = L̄ȳ. The second term, x̂b, represents the
improvement in that estimate that arises by taking into account one more observation,
namely, yb. It represents that part of x that cannot be estimated from ȳ. And, it is
computable only from that part of the new observation yb that cannot be predicted
from ȳ, that is, eb. The degree of improvement of x̂ over x̄, as measured by the mean-
square estimation errors, can be computed explicitly in this basis. To see this, denote
the estimation errors based on y and ȳ by

e = x− x̂ = x− gTeb , ē = x− x̄ = x− ḡTēb

Then, Eq. (1.7.24) implies e = x− x̂ = (x− x̄)−x̂b, or

e = ē− geb (1.7.26)

Because e and y, or eb, are orthogonal, we have E[x̂e]= 0, which implies that

E = E[e2]= E[xe]= E[
x(x− gTeb)

] = E[x2]−gTE[x eb]

Similarly, Ē = E[ē2]= E[x2]−ḡTE[x ēb]. It follows that

E = Ē− gE[xeb]= Ē− g2Eb (1.7.27)

where we used g = E[xeb]E−1
b . The subtracted term represents the improvement ob-

tained by including one more observation in the estimate. It follows from the above
discussion that the lower-order portion ḡ of g is already optimal. This is not so in the y
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basis, that is, the lower-order portion of h is not equal to the lower-order optimal weights
h̄ = R̄−1r̄, where r̄ = E[xȳ]. The explicit relationship between the two may be found
as follows. Inserting the block decomposition Eq. (1.7.13) of L into Eq. (1.7.19) and us-
ing the lower-order result R̄−1 = L̄TD̄−1

b L̄, we may derive the following order-updating
expression for R−1

R−1 =
[
R̄−1 0
0T 0

]
+ 1

Eb
bbT (1.7.28)

Noting that r̄ is the lower-order part of r, r = [r̄T, rb]T, where rb = E[xyb], we
obtain the following order-updating equation for the optimal h

h = R−1r =
[
R̄−1 0
0T 0

][
r̄
rb

]
+ 1

Eb
(bbT)r =

[
h̄
0

]
+ cbb (1.7.29)

where cb = (bTr)/Eb = (βββT r̄ + rb)/Eb. A block diagram realization that takes into
account the order-recursive construction of the estimate (1.7.24) and estimation error
(1.7.26) is shown below.

In Chapter 5, we discuss in greater detail the design procedure given by Eq. (1.7.22)
and show how to realize Eqs. (1.7.21), or (1.7.24) and (1.7.26), by means of a lattice
structure. In Chapter 7, we discuss the corresponding adaptive versions, leading to the
so-called adaptive lattice filters for linear prediction and Wiener filtering, such as the
gradient lattice and RLS lattice.

Forward Prediction and UL Factorization

Next, we turn our attention to the forward predictors defined in Eq. (1.7.12). They lead
to UL (rather than LU) factorization of the covariance matrix. Considering an arbitrary
unit upper-triangular matrix Ũ of the same dimension as R̃, we may form the larger unit
upper-triangular matrix whose top row is the forward predictor aT = [1,αααT]

U =
[

1 αααT

0 Ũ

]
(1.7.30)

Then, it follows from Eq. (1.7.12) that

URUT =
[
Ea 0T

0 ŨR̃ŨT

]
(1.7.31)

It follows that URUT is the covariance matrix of the transformed vector

ea = Uy =
[

1 αααT

0 Ũ

][
ya
ỹ

]
=

[
ya +αααTỹ
Ũỹ

]
=

[
ea
ẽa

]
(1.7.32)

Choosing Ũ to correspond to the UL factor of R̃, that is, ŨR̃ŨT = D̃a, where D̃a is
diagonal, then Eq. (1.7.31) implies that U will correspond to the UL factor of R:

URUT =
[
Ea 0T

0 D̃a

]
= Da (1.7.33)
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This is equivalent to Eq. (1.6.14). The basis ea = Uy is completely decorrelated,
with covariance matrix E[eaeTa]= Da. It is equivalent to Eq. (1.6.13). The rows of U are
the forward predictors of successive orders. And therefore, the UL factorization of R
is equivalent to performing the Gram-Schmidt construction starting at the endpoint yb
and proceeding to ya. The following example illustrates the method.

Example 1.7.2: By successively solving forward prediction problems of lower and lower order,
construct the UL factorization of the covariance matrix R of Example 1.7.1.

Solution: Using Eq. (1.7.7), we find

ααα = −R̃−1ra = −
[

3 2
2 3

]−1 [
1
0

]
= −1

5

[
3 −2
−2 3

][
1
0

]
=

[
−3/5

2/5

]

Thus, aT = [1,αααT]= [1,−3/5,2/5]. The estimation error is

Ea = ρa +αααTra = 1+ [−3/5,2/5]
[

1
0

]
= 2

5

Repeating the procedure on R̃ =
[

3 2
2 3

]
, we find the corresponding forward prediction

coefficients, satisfying R̃ã = Ẽaũ, where ũ =
[

1
0

]
,

α̃αα = −[3]−1[2]= −2

3
, ãT = [1, α̃ααT]= [1,−2/3]

and Ẽa = ρ̃a + α̃ααT r̃a = 3 − (2/3)×2 = 5/3. The rows of U are the forward predictor
coefficients and the diagonal entries of Da are the Eas:

U =
⎡⎢⎣ 1 −3/5 2/5

0 1 −2/3
0 0 1

⎤⎥⎦ , Da =
⎡⎢⎣ 2/5 0 0

0 5/3 0
0 0 3

⎤⎥⎦
It is easily verified that URUT = Da. Note that the last entry of Da is always equal to
ρb. ��

Equation (1.7.33) can be used to compute the inverse of R:

R−1 = UTD−1
a U (1.7.34)

Using the lower-order result R̃−1 = ŨTD̃−1
a Ũ and the decomposition (1.7.30), we find

the following order-updating equation for R−1, analogous to Eq. (1.7.28):

R−1 =
[

0 0T

0 R̃−1

]
+ 1

Ea
aaT (1.7.35)

Denoting r̃ = E[xỹ] and ra = E[xya], we obtain the alternative order-update equa-
tion for h, analogous to Eq. (1.7.29):

h = R−1r =
[

0 0T

0 R̃−1

][
ra
r̃

]
+ 1

Ea
(aTr)a =

[
0
h̃

]
+ caa (1.7.36)

where ca = (aTr)/Ea = (ra + αααT r̃)/Ea, and h̃ = R̃−1r̃ is the lower-order optimal
estimator for estimating x from ỹ. By analogy with Eq. (1.7.21), we could also choose to
express the estimates in the ea basis

x̂ = hTy = hTU−1ea = gTuea (1.7.37)
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where gu = U−Th. A realization is shown below.

The most important part of the realizations based on the diagonal bases ea or ea
is the preprocessing part that decorrelates the y basis, namely, eb = Ly, or ea = Uy.
We will see in Chapters 5 and 7 that this part can be done efficiently using the Levinson
recursion and the lattice structures of linear prediction. The LU representation, based on
the backward predictors, eb = Ly, is preferred because it is somewhat more conveniently
realized in terms of the lattice structure than the UL representation ea = Uy.

Order Updates

So far, we studied the problems of forward and backward prediction separately from
each other. Next, we would like to consider the two problems together and show how to
construct the solution of the pair of equations (1.7.12) from the solution of a similar pair
of lower order. This construction is the essence behind Levinson’s algorithm for solving
the linear prediction problem, both in the stationary and in the adaptive least squares
cases. Consider the following pair of lower-order forward and backward predictors,
defined in terms of the block decompositions (1.7.5) of R:

R̄ā = Ēaū , R̃b̃ = Ẽbṽ (1.7.38)

where ū and ṽ are unit vectors of dimension one less than those of Eq. (1.7.12). They
are related to u and v through the decompositions

u =
[

ū
0

]
, v =

[
0
ṽ

]
(1.7.39)

The basic result we would like to show is that the solution of the pair (1.7.12) may
be constructed from the solution of the pair (1.7.38) by

a =
[

ā
0

]
− γb

[
0
b̃

]

b =
[

0
b̃

]
− γa

[
ā
0

] (1.7.40)

This result is motivated by Eq. (1.7.39), which shows that the right-hand sides of
Eqs. (1.7.38) are already part of the right-hand sides of Eq. (1.7.12), and therefore, the
solutions of Eq. (1.7.38) may appear as part of the solutions of (1.7.12). The prediction
errors are updated by

Ea = (1− γaγb)Ēa , Eb = (1− γaγb)Ẽb (1.7.41)

where

γb = ΔaẼb , γa = ΔbĒa (1.7.42)

The γs are known as the reflection or PARCOR coefficients. The quantities Δa and
Δb are defined by

Δa = āTrb , Δb = b̃
T

ra (1.7.43)
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The two Δs are equal, Δa = Δb, as seen from the following considerations. Using
the decompositions (1.7.5), we find

R
[

ā
0

]
=

[
R̄ rb
rTb ρb

][
ā
0

]
=

[
R̄ā
rTb ā

]
=

[
Ēaū
Δa

]

R
[

0
b̃

]
=

[
ρa rTa
ra R̃

][
0
b̃

]
=

[
rTa b̃
R̃b̃

]
=

[
Δb
Ẽbṽ

]
They may be written more conveniently as

R
[

ā
0

]
=

[
Ēaū
Δa

]
= Ēa

[
ū
0

]
+Δa

[
0
1

]
= Ēau+Δav (1.7.44a)

R
[

0
b̃

]
=

[
Δb
Ẽbṽ

]
= Δb

[
1
0

]
+ Ẽb

[
0
ṽ

]
= Δbu+ Ẽbv (1.7.44b)

Noting that dTu and dTv are equal to the first and last components of a vector d, we

have [0, b̃T]u = 0 and [0, b̃T]v = 1 because the first and last components of [0, b̃T] are
zero and one, respectively. Similarly, [āT,0]u = 1 and [āT,0]v = 0. Thus, multiplying

Eq. (1.7.44a) from the left by [0, b̃T] and Eq. (1.7.44b) by [āT,0], we find

[0, b̃T]R
[

ā
0

]
= Δa , [āT,0]R

[
0
b̃

]
= Δb (1.7.45)

The equality of the Δs follows now from the fact that R is a symmetric matrix. Thus,

Δa = Δb ≡ Δ (1.7.46)

An alternative proof, based on partial correlations, will be given later. Equations
(1.7.40) and (1.7.41) follow now in a straightforward fashion from Eq. (1.7.44). Multiply-
ing the first part of Eq. (1.7.40) by R and using Eqs. (1.7.12) and (1.7.44), we find

Eau = Ra = R
[

ā
0

]
− γbR

[
0
b̃

]
or,

Eau = (Ēau+Δav)−γb(Δbu+ Ẽbv)= (Ēa − γbΔb)u+ (Δb − γbẼb)v
which implies the conditions

Ea = Ēa − γbΔb , Δa − γbẼb = 0 (1.7.47)

Similarly, multiplying the second part of the Eq. (1.7.40) by R, we obtain

Ebv = (Δbu+ Ẽbv)−γa(Ēau+Δbv)= (Δb − γaĒa)u+ (Ẽb − γaΔa)v
which implies

Eb = Ẽb − γaΔa , Δb − γaĒa = 0 (1.7.48)

Equations (1.7.41) and (1.7.42) follow now from (1.7.47) and (1.7.48). By analogy with
Eq. (1.7.9), we may now define the prediction errors corresponding to the lower-order
predictors ā and b̃ by

ēa = āTȳ , ẽb = b̃
T

ỹ (1.7.49)

Using Eqs. (1.7.9) and (1.7.40), we find the following updating equations for the pre-
diction errors

aTy = [āT,0]
[

ȳ
yb

]
− γb[0, b̃T]

[
ya
ỹ

]
= āTȳ− γbb̃Tỹ

bTy = [0, b̃T]
[
ya
ỹ

]
− γa[āT,0]

[
ȳ
yb

]
= b̃

T
ỹ− γaāTȳ
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or,
ea = ēa − γbẽb , eb = ẽb − γaēa (1.7.50)

A lattice type realization ofEq. (1.7.50) is shown below. It forms the basis of the
lattice structures of linear prediction discussed in Chapters 5 and 7.

The order-updating procedure is illustrated by the following example.

Example 1.7.3: Using Eq. (1.7.40), construct the forward and backward predictors a and b found
previously in Examples 1.7.1 and 1.7.2.

Solution: The first part of Eq. (1.7.38), R̄ā = Ēaū is solved as follows:[
1 1
1 3

][
1
ᾱ

]
= Ēa

[
1
0

]
⇒ ᾱ = −1

3
, Ēa = 2

3

Therefore, ā =
[

1
−1/3

]
. Similarly, R̃ỹ = Ẽbṽ, is solved by

[
3 2
2 3

][
β̃
1

]
= Ẽb

[
0
1

]
⇒ β̃ = −2

3
, Ẽb = 5

3

Hence, b̃ =
[
−2/3

1

]
. Next, we determine

Δ = āTrb = [1,−1/3]
[

0
2

]
= −2

3
, γb = Δ

Ẽb
= −2

5
, γa = Δ

Ēa
= −1

It follows from Eq. (1.7.40) that

a =
[

ā
0

]
− γb

[
0
b̃

]
=

⎡⎢⎣ 1
−1/3

0

⎤⎥⎦− (
−2

5

)⎡⎢⎣ 0
−2/3

1

⎤⎥⎦ =
⎡⎢⎣ 1
−3/5
2/5

⎤⎥⎦

b =
[

0
b̃

]
− γa

[
ā
0

]
=

⎡⎢⎣ 0
−2/3

1

⎤⎥⎦− (−1)

⎡⎢⎣ 1
−1/3

0

⎤⎥⎦ =
⎡⎢⎣ 1
−1
1

⎤⎥⎦
and the prediction errors are found from Eq. (1.7.41)

Ea = Ēa(1− γaγb)= 2

3
(1− 2/5)= 2

5
, Eb = Ẽb(1− γaγb)= 5

3
(1− 2/5)= 1

Partial Correlation Interpretation

Next, we show that γa and γb are partial correlation coefficients in the sense of Section
1.6. Let yc denote all the components of y that lie between ya and yb, so that

y =
⎡⎢⎣ yayc
yb

⎤⎥⎦ , ȳ =
[
ya
yc

]
, ỹ =

[
yc
yb

]
(1.7.51)

The forward predictor a was defined as the best estimator of ya based on the rest
of the vector y. By the same token, ā is the best estimator of ya based on the rest of ȳ,
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that is, yc. Similarly, the backward predictor b̃ defines the best estimator of yb based
on the rest of the vector ỹ; again, yc. Decomposing ā and b̃ as

ā =
[

1
ᾱαα

]
, b̃ =

[
β̃ββ
1

]
we may write the best estimates of ya and yb based on yc as

ŷa/c = E[yayTc ]E[ycyTc ]−1yc = −ᾱααTyc , ŷb/c = E[ybyTc ]E[ycyTc ]−1yc = −β̃ββ
T

yc

and the estimation errors

ēa = āTȳ = ya − ŷa/c , ẽb = b̃
T

ỹ = yb − ŷb/c (1.7.52)

Thus, ēa and ẽb represent what is left of ya and yb after we project out their depen-
dence on the intermediate vector yc. The direct influence of ya on yb, with the effect
of yc removed, is measured by the correlation E[ēaẽb]. This correlation is equal to the
quantity Δ defined in Eq. (1.7.46). This follows from Eq. (1.7.43)

Δa = āTrb = āTE[ybȳ]= E
[
yb(āTȳ)

] = E[ybēa]
similarly,

Δb = b̃
T

ra = b̃
TE[yaỹ]= E

[
ya(b̃

T
ỹ)

] = E[yaẽb]
Now, because ēa is orthogonal to yc and ŷb/c is a linear combination of yc, it follows

that E[ŷb/cēa]= 0. Similarly, because ẽb is orthogonal to yc and ŷa/c is linearly related
to yc, it follows that E[ŷa/cẽb]= 0. Thus,

Δa = E[ybēa]= E
[
(yb − ŷb/c)ēa]= E[ẽbēa]

Δb = E[yaẽb]= E
[
(ya − ŷa/c)ẽb]= E[ēaẽb]

Therefore, Δa and Δb are equal

Δa = Δb = E[ēaẽb] (1.7.53)

This is an alternative proof of Eq. (1.7.46). It follows that γa and γb are normalized
PARCOR coefficients in the sense of Section 1.6:

γb = E[ēaẽb]E[ẽ2
b]

, γa = E[ẽbēa]E[ē2
a]

(1.7.54)

Using the Schwarz inequality for the inner product between two random variables,
namely,

∣∣E[uv]∣∣2 ≤ E[u2]E[v2], we find the inequality

0 ≤ γaγb = E[ēaẽb]2

E[ẽ2
b]E[ē

2
a]
≤ 1 (1.7.55)

This inequality also follows from Eq. (1.7.41) and the fact that Ea and Ēa are positive
quantities, both being mean square errors.

Example 1.7.4: For Example 1.7.1, compute the estimates ŷa/c and ŷb/c directly and compare
them with the results of Example 1.7.3.

Solution: From the matrix elements of R we have E[yayb]= 1, E[ybyc]= 2, and E[y2
c]= 3.

Thus,

ŷa/c = E[yayc]E[y2
c]−1yc = 1

3
yc , ŷb/c = E[ybyc]E[y2

c]−1yc = 2

3
yc

The corresponding errors will be

ēa = ya − 1

3
yc = [1,−1/3]ȳ , ẽb = yb − 2

3
yc = [−2/3,1]ỹ

The results are identical to those of Example 1.7.3. ��
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Conventional Cholesky Factorizations

Equation (1.7.18) shows that the conventional Cholesky factor ofR is given by the inverse
matrix L−1. A direct construction of the conventional Cholesky factor that avoids the
computation of this inverse is as follows. Define

Gb = E[yeTb] (1.7.56)

If we use eb = Ly and E[ebeTb]= Db, it follows that

LGb = LE[yeTb]= E[ebeTb]= Db
or,

Gb = L−1Db (1.7.57)

Thus, Gb is a lower-triangular matrix. Its main diagonal consists of the diagonal
entries of Db. Solving for L−1 = GbD−1

b and inserting in Eq. (1.7.18), we find the con-
ventional LU factorization of R:

R = (GbD−1
b )Db(D

−1
b G

T
b)= GbD−1

b G
T
b (1.7.58)

Similarly, the conventional UL factorization of R is obtained from Eq. (1.7.33) by
defining the upper-triangular matrix

Ga = E[yeTa] (1.7.59)

Using ea = Uy and E[eaeTa]= Da, we find

UGa = Da ⇒ Ga = U−1Da (1.7.60)

which yields the conventional UL factorization of R:

R = U−1DaU−T = GaD−1
a GTa

The columns of the matrices Ga and Gb will be referred to as the forward and back-
ward gapped functions. This terminology will be justified in Chapters 2 and 5. The
decomposition of Gb into its columns can be done order-recursively using the decom-
position (1.7.15). We have

Gb = E
[
y[ēTb , eb]

]≡ [Ḡb,gb] (1.7.61)

where Ḡb = E[yēTb] and gb = E[yeb]. Similarly, using Eq. (1.7.23) we find

Ga = E
[
y[ea, ẽTa]

] ≡ [ga, G̃a] (1.7.62)

where G̃a = E[yẽTa] and ga = E[yea]. Motivated by the lattice recursions (1.7.50), we
are led to define the lower-order gapped functions

g̃b = E[yẽb] , ḡa = E[yēa]

It follows that the gapped functions ga = E[yea] and gb = E[yeb] can be con-
structed order-recursively by the lattice-type equations

ga = ḡa − γbg̃b
gb = g̃b − γaḡa

(1.7.63)

The proof is straightforward. For example, E[yea]= E
[
y(ēa − γbẽb)

]
. In Chapter

5 we will see that these equations are equivalent to the celebrated Schur algorithm for
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solving the linear prediction problem. In recent years, the Schur algorithm has emerged
as an important signal processing tool because it admits efficient fixed-point and parallel
processor implementations. Equations (1.7.63) are mathematically equivalent to the
Levinson-type recursions (1.7.40). In fact, Eq. (1.7.40) can be derived from Eq. (1.7.63)
as follows. Using ea = aTy and eb = bTy, it follows that

ga = E[yea]= E
[
y(yTa)

] = Ra , gb = E[yeb]= E
[
y(yTb)

] = Rb

Similarly, we have

ḡa = R
[

ā
0

]
, g̃b = R

[
0
b̃

]
(1.7.64)

These are easily shown. For example,

R
[

ā
0

]
= E[

y[ȳT, yb]
][

ā
0

]
= E[yȳT]ā = E[yēa]= ḡa

Therefore, the first part of Eq. (1.7.63) is equivalent to

Ra = R
[

ā
0

]
− γbR

[
0
b̃

]
Equation (1.7.40) follows now by canceling out the matrix factor R. One of the es-

sential features of the Schur algorithm is that the reflection coefficients can also be
computed from the knowledge of the lower-order gapped functions ḡa and g̃b, as fol-
lows. Using Eq. (1.7.64) and dotting Eq. (1.7.44) with the unit vectors u and v, we find

Ēa = uTḡa , Ẽb = vTg̃b , Δ = uTg̃b = vTḡa (1.7.65)

Thus, Eq. (1.7.42) may be written as

γb = vTḡa
vTg̃b

, γb = uTg̃b
uTḡa

(1.7.66)

Summary

We have argued that the solution of the general linear estimation problem can be made
more efficient by working with the decorrelated bases ea or eb, which contain no re-
dundancies. Linear prediction ideas come into play in this context because the linear
transformations U and L that decorrelate the data vector y are constructible from the
forward and backward linear prediction coefficients a and b. Moreover, linear predic-
tion was seen to be equivalent to the Gram-Schmidt construction and to the Cholesky
factorization of the covariance matrix R. The order-recursive solutions of the linear pre-
diction problem and the linear estimation problem, Eqs. (1.7.24) through (1.7.26), give
rise to efficient lattice implementations with many desirable properties, such as robust-
ness under coefficient quantization and modularity of structure admitting parallel VLSI
implementations.

In this section, we intentionally did not make any additional assumptions about
any structural properties of the covariance matrix R. To close the loop and obtain the
efficient computational algorithms mentioned previously, we need to make additional
assumptions on R. The simplest case is to assume that R has a Toeplitz structure. This
case arises when y is a block of successive signal samples from a stationary time series.
The Toeplitz property means that the matrix elements along each diagonal of R are the
same. Equivalently, the matrix elementRij depends only on the difference of the indices,
that is, Rij = R(i − j). With respect to the subblock decomposition (1.7.5), it is easily
verified that a necessary and sufficient condition for R to be Toeplitz is that

R̃ = R̄
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This condition implies that the linear prediction solutions for R̃ and R̄ must be the
same, that is,

b̃ = b̄ , ã = ā

Thus, from the forward and backward linear prediction solutions ā and b̄ of the
lower-order Toeplitz submatrix R̄, we first obtain b̃ = b̄ and then use Eq. (1.7.40) to get
the linear prediction solution of the higher order matrix R. This is the essence behind
Levinson’s algorithm. It will be discussed further in Chapters 2 and 5.

In the nonstationary time series case, the matrixR is not Toeplitz. Even then one can
obtain some useful results by means of the so-called shift-invariance property. In this
case, the data vector y consists of successive signal samples starting at some arbitrary
sampling instant n

y(n)=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

yn
yn−1

...
yn−M+1

yn−M

⎤⎥⎥⎥⎥⎥⎥⎥⎦ =
[

ȳ(n)
yn−M

]
=

[
yn

ỹ(n)

]

It follows that

ȳ(n)=

⎡⎢⎢⎣
yn
...

yn−M+1

⎤⎥⎥⎦ , ỹ(n)=

⎡⎢⎢⎣
yn−1

...
yn−M

⎤⎥⎥⎦ , or, ỹ(n)= ȳ(n− 1)

This implies that R̃(n)= R̄(n− 1), and therefore

ã(n)= ā(n− 1) , b̃(n)= b̄(n− 1)

Thus, order updating is coupled with time updating. These results are used in the
development of the fast recursive least-squares adaptive filters, discussed in Chapter 7.

1.8 Random Signals

A random signal (random process, or stochastic process) is defined as a sequence of
random variables {x0, x1, x2, . . . , xn, . . . } where the index n is taken to be the time. The
statistical description of so many random variables is very complicated since it requires
knowledge of all the joint densities

p(x0, x1, x2, . . . , xn) , for n = 0,1,2, . . .

If the mean E[xn] of the random signal is not zero, it can be removed by redefining
a new signal xn − E[xn]. From now on, we will assume that this has been done, and
shall work with zero-mean random signals. The autocorrelation function is defined as

Rxx(n,m)= E[xnxm] , n,m = 0,1,2, . . .

Sometimes it will be convenient to think of the random signal as a (possibly infinite)
random vector x = [x0, x1, x2, . . . , xn, . . . ]T, and of the autocorrelation function as a
(possibly infinite) matrix Rxx = E[xxT]. Rxx is positive semi-definite and symmetric.
The autocorrelation function may also be written as

Rxx(n+ k,n)= E[xn+kxn] (1.8.1)
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It provides a measure of the influence of the sample xn on the sample xn+k, which
lies in the future (if k > 0) by k units of time. The relative time separation k of the two
samples is called the lag.

If the signal xn is stationary (or wide-sense stationary), then the above average is
independent of the absolute time n, and is a function only of the relative lag k; abusing
somewhat the above notation, we may write in the case:

Rxx(k)= E[xn+kxn]= E[xn′+kxn′] (autocorrelation) (1.8.2)

In other words, the self-correlation properties of a stationary signal xn are same
on the average, regardless of when this average is computed. In a way, the stationary
random signal xn looks the same for all times. In this sense, if we take two different
blocks of data of lengthN, as shown in Fig. 1.4, we should expect the average properties,
such as means and autocorrelations, extracted from these blocks of data to be roughly
the same. The relative time separation of the two blocks as a whole should not matter.

Fig. 1.4 Blocks of data from a stationary signal.

A direct consequence of stationarity is the reflection-invariance of the autocorrela-
tion function Rxx(k) of Eq. (1.8.2):

Rxx(k)= E[xn+kxn]= Rxx(−k) (1.8.3)

One way to introduce a systematization of the various types of random signals is
the Markov classification into zeroth-order Markov, first-order Markov, and so on. The
simplest possible random signal is the zeroth-order Markov, or purely random signal,
defined by the requirement that all the (zero-mean) random variables xn be independent
of each other and arise from a common density p(x); this implies

p(x0, x1,x2, . . . , xn)= p(x0)p(x1)p(x2)· · ·p(xn)· · ·
Rxx(n,m)= E[xnxm]= 0 , for n 	=m

Such a random signal is stationary. The quantity Rxx(n,n) is independent of n, and
represents the variance of each sample:

Rxx(0)= E[x2
n]= σ2

x

In this case, the autocorrelation function Rxx(k) may be expressed compactly as

Rxx(k)= E[xn+kxn]= σ2
xδ(k) (1.8.4)

A purely random signal has no memory, as can be seen from the property

p(xn, xn−1)= p(xn)p(xn−1) or, p(xn|xn−1)= p(xn)

that is, the occurrence of xn−1 at time instant n − 1 does not in any way affect, or
restrict, the values of xn at the next time instant. Successive signal values are entirely
independent of each other. Past values do not influence future values. No memory is
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retained from sample to sample; the next sample will take a value regardless of the
value that the previous sample has already taken. Since successive samples are random,
such a signal will exhibit very rapid time variations. But it will also exhibit slow time
variations. Such time variations are best discussed in the frequency domain. This will
lead directly to frequency concepts, power spectra, periodograms, and the like. It is
expected that a purely random signal will contain all frequencies, from the very low to
the very high, in equal proportions (white noise).

The next least complicated signal is the first-order Markov signal, which has memory
only of one sampling instant. Such a signal remembers only the previous sample. It is
defined by the requirement that

p(xn|xn−1, xn−1, . . . , x0)= p(xn|xn−1)

which states that xn may be influenced directly only by the previous sample value xn−1,
and not by the samples xn−2, . . . , x0 that are further in the past. The complete statistical
description of such random signal is considerably simplified. It is sufficient to know
only the marginal densities p(xn) and the conditional densities p(xn|xn−1). Any other
joint density may be constructed in terms of these. For instance,

p(x3, x2, x1, x0) = p(x3|x2, x1, x0)p(x2, x1, x0) (by Bayes’ rule)

= p(x3|x2)p(x2, x1, x0) (by the Markov property)

= p(x3|x2)p(x2|x1, x0)p(x1, x0)

= p(x3|x2)p(x2|x1)p(x1, x0)

= p(x3|x2)p(x2|x1)p(x1|x0)p(x0)

1.9 Power Spectrum and Its Interpretation

The power spectral density of a stationary random signal xn is defined as the double-
sided z-transform of its autocorrelation function

Sxx(z)=
∞∑

k=−∞
Rxx(k)z−k (1.9.1)

whereRxx(k)is given by Eq. (1.8.2). IfRxx(k) is strictly stable, the region of convergence
of Sxx(z) will include the unit circle in the complex z-plane. This allows us to define
the power spectrum Sxx(ω) of the random signal xn by setting z = ejω in Eq. (1.9.1).
Abusing the notation somewhat, we have in this case

Sxx(ω)=
∞∑

k=−∞
Rxx(k)e−jωk (1.9.2)

This quantity conveys very useful information. It is a measure of the frequency
content of the signal xn and of the distribution of the power of xn over frequency. To
see this, consider the inverse z-transform

Rxx(k)=
∮

u.c.
Sxx(z)zk

dz
2πjz

(1.9.3)

where, since Rxx(k) is stable, the integration contour may be taken to be the unit circle.
Using z = ejω, we find for the integration measure

dz
2πjz

= dω
2π
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Thus, Eq. (1.9.3) may also be written as an inverse Fourier transform

Rxx(k)=
∫ π
−π
Sxx(ω)ejωk

dω
2π

(1.9.4)

In particular, the variance of xn can be written as

Rxx(0)= σ2
x = E[x2

n]=
∫ π
−π
Sxx(ω)

dω
2π

(1.9.5)

Since the quantity E[x2
n] represents the average total power contained in xn, it fol-

lows that Sxx(ω) will represent the power per unit frequency interval. A typical power
spectrum is depicted in Fig. 1.5. As suggested by this figure, it is possible for the power
to be mostly concentrated about some frequencies and not about others. The area under
the curve represents the total power of the signal xn.

Fig. 1.5 Typical power spectrum.

If xn is an uncorrelated (white-noise) random signal with a delta-function autocorre-
lation, given by Eq. (1.8.4), it will have a flat power spectrum with power level equal to
the variance σ2

x :

Sxx(ω)= σ2
x

Another useful concept is that of the cross-correlation and cross-spectrum between
two stationary random sequences xn and yn. These are defined by

Ryx(k)= E[yn+kxn] , Syx(z)=
∞∑

k=−∞
Ryx(k)z−k (1.9.6)

Using stationarity, it is easy to show the reflection symmetry property

Ryx(k)= Rxy(−k) (1.9.7)

that is analogous to Eq. (1.8.3). In the z-domain, the reflection symmetry properties
(1.8.3) and (1.9.7) are translated into:

Sxx(z)= Sxx(z−1) , Syx(z)= Sxy(z−1) (1.9.8)

respectively; and also

Sxx(ω)= Sxx(−ω) , Syx(ω)= Sxy(−ω) (1.9.9)
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1.10 Sample Autocorrelation and the Periodogram

From now on we will work mostly with stationary random signals. If a block ofN signal
samples is available, we will assume that it is a segment from a stationary signal. The
length N of the available data segment is an important consideration. For example, in
computing frequency spectra, we know that high resolution in frequency requires a long
record of data. However, if the record is too long the assumption of stationarity may no
longer be justified. This is the case in many applications, as for example in speech and
EEG signal processing. The speech waveform does not remain stationary for long time
intervals. It may be assumed to be stationary only for short time intervals. Such a signal
may be called piece-wise stationary. If it is divided into short segments of duration of
approximately 20–30 milliseconds, then the portion of speech within each segment may
be assumed to be a segment from a stationary signal. A typical piece-wise stationary
signal is depicted in Fig. 1.6.

Fig. 1.6 Piece-wise stationary signal.

The main reason for assuming stationarity, or piece-wise stationarity, is that most
of our methods of handling random signals depend heavily on this assumption. For
example, the statistical autocorrelations based on the ensemble averages (1.8.2) may
be replaced in practice by time averages. This can be justified only if the signals are
stationary (actually, they must be ergodic). If the underlying signal processes are not
stationary (and therefore definitely are not ergodic) we cannot use time averages. If a
signal is piece-wise stationary and divided into stationary blocks, then for each such
block, ensemble averages may be replaced by time averages. The time average approxi-
mation of an autocorrelation function is called the sample autocorrelation and is defined
as follows: Given a block of length N of measured signal samples

y0, y1, y2, . . . , yN−1

define

R̂yy(k)= 1

N

N−1−k∑
n=0

yn+kyn , for 0 ≤ k ≤ N − 1 (1.10.1)

and
R̂yy(k)= R̂yy(−k) , for − (N − 1)≤ k ≤ −1

The subroutine corr (see Appendix B) takes as inputs two length-N signal blocks
yn, xn, n = 0,1, . . . ,N − 1, and computes their sample cross-correlation defined as

R̂yx(k)= 1

N

N−1−k∑
k=0

yn+kxn , k = 0,1, . . . ,N − 1

This routine may be used to compute either auto-correlations or cross-correlations.
The periodogram is defined as the (double-sided) z-transform of the sample autocorre-
lation

Ŝyy(z)=
N−1∑

k=−(N−1)
R̂yy(k)z−k (1.10.2)
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It may be thought of as an approximation (estimate) of the true power spectral den-
sity Syy(z). It is easily shown that the periodogram may be expressed in terms of the
z-transform of the data sequence itself, as

Ŝyy(z)= 1

N
Y(z)Y(z−1) (1.10.3)

where

Y(z)=
N−1∑
n=0

ynz−n (1.10.4)

As a concrete example, consider a length-3 signal y = [y0, y1, y2]T. Then,

Y(z)Y(z−1) = (y0 + y1z−1 + y2z−2)(y0 + y1z+ y2z2)

= (y2
0 + y2

1 + y2
2)+(y0y1 + y1y2)(z−1 + z)+(y0y2)(z−2 + z2)

from which we extract the inverse z-transform

R̂xx(0) = 1

3
(y2

0 + y2
1 + y2

2)

R̂xx(−1)= R̂xx(1) = 1

3
(y0y1 + y1y2)

R̂xx(−2)= R̂xx(2) = 1

3
(y0y2)

These equations may also be written in a nice matrix form, as follows

⎡⎢⎣ R̂xx(0) R̂xx(1) R̂xx(2)
R̂xx(1) R̂xx(0) R̂xx(1)
R̂xx(2) R̂xx(1) R̂xx(0)

⎤⎥⎦
︸ ︷︷ ︸

R̂yy

= 1

3

⎡⎢⎣ y0 y1 y2 0 0
0 y0 y1 y2 0
0 0 y0 y1 y2

⎤⎥⎦
︸ ︷︷ ︸

YT

⎡⎢⎢⎢⎢⎢⎢⎣
y0 0 0
y1 y0 0
y2 y1 y0

0 y2 y1

0 0 y2

⎤⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

Y

or,

R̂yy = 1

3
YTY

The matrix R̂yy on the left is called the sample autocorrelation matrix. It is a Toeplitz
matrix, that is, it has the same entry in each diagonal. The right hand side also shows
that the autocorrelation matrix is positive definite. In the general case of a length-N
sequence yn, the matrix Y has N columns, each a down-shifted (delayed) version of the
previous one, corresponding to a total of N− 1 delays. This requires the length of each
column to be N + (N − 1), that is, there are 2N − 1 rows. We will encounter again this
matrix factorization in the least-squares design of waveshaping filters.

The sample autocorrelation may also be thought of as ordinary convolution. Note
that Y(z−1) represents the z-transform the original signal y = [y0, y1, . . . , yN−1]T re-
flected about the time origin. The reflected signal may be made causal by a delay of
N − 1 units of time. The reflected-delayed signal has some significance, and is known
as the reversed signal. Its z-transform is the reverse polynomial of Y(z)

YR(z)= z−(N−1)Y(z−1)

[ 0 0 · · · 0 y0 y1 · · · yN−2 yN−1 ] = original
[ yN−1 yN−2 · · · y1 y0 0 · · · 0 0 ] = reflected
[ 0 0 · · · 0 yN−1 yN−2 · · · y1 y0 ] = reversed
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The periodogram is expressed then in the form

Ŝxx(z)= 1

N
Y(z)Y(z−1)= 1

N
Y(z)YR(z)zN−1

which implies that R̂yy(k) may be obtained by convolving the original data sequence
with the reversed sequence and then advancing the result in time by N − 1 time units.
This is seen by the following convolution table.

The periodogram spectrum is obtained by substituting z = ejω

Ŝyy(ω)= 1

N
∣∣Y(ω)∣∣2 = 1

N

∣∣∣∣∣∣
N−1∑
n=0

yne−jωn
∣∣∣∣∣∣

2

(1.10.5)

The periodogram spectrum (1.10.5) may be computed efficiently using FFT methods.
The digital frequencyω in units of [radians/sample] is related to the physical frequency
f in [Hz] by

ω = 2πfT = 2πf
fs

where fs is the sampling rate, and T = 1/fs, the time interval between samples. The
frequency resolution afforded by a length-N sequence is

Δω = 2π
N
, or, Δf = fs

N
= 1

NT
= 1

TR
[Hz]

where TR = NT is the duration of the data record in seconds. The periodogram spec-
trum suffers from two major drawbacks. First, the rectangular windowing of the data
segment introduces significant sidelobe leakage. This can cause misinterpretation of
sidelobe spectral peaks as being part of the true spectrum. And second, it is well-known
that the periodogram spectrum is not a good (consistent) estimator of the true power
spectrum Syy(ω).

The development of methods to improve on the periodogram is the subject of clas-
sical spectral analysis [9–19]. We just mention, in passing, one of the most popular of
such methods, namely, Welch’s method [20]. The given data record of lengthN is subdi-
vided intoK shorter segments which may be overlapping or non-overlapping. If they are
non-overlapping then each will have lengthM = N/K; if they are 50% overlapping then
M = 2N/(K + 1). Each such segment is then windowed by a length-M data window,
such as a Hamming window. The window reduces the sidelobe frequency leakage at the
expense of resolution. The window w(n) is typically normalized to have unit average
energy, that is, (1/M)

∑M−1
n=0 w2(n)= 1. The periodogram of each windowed segment is

then computed by FFT methods and theK periodograms are averaged together to obtain
the spectrum estimate

S(ω)= 1

K

K∑
i=1

Si(ω)

where Si(ω) is the periodogram of the ith segment. The above subdivision into seg-
ments imitates ensemble averaging, and therefore, it results in a spectrum estimate of
improved statistical stability. However, since each periodogram is computed from a
length-M sequence, the frequency resolution is reduced from Δω = 2π/N to roughly
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Δω = 2π/M (for a well-designed window). Therefore, to maintain high frequency reso-
lution (largeM), as well as improved statistical stability of the spectrum estimate (large
K), a long data record N = MK is required—a condition that can easily come into con-
flict with stationarity. The so-called “modern methods” of spectrum estimation, which
are based on parametric signal models, can provide high resolution spectrum estimates
from short data records.

1.11 Random Signal Models and Their Uses

Models that provide a characterization of the properties and nature of random signals
are of primary importance in the design of optimum signal processing systems. This
section offers an overview of such models and outlines their major applications. Many
of the ideas presented here will be developed in greater detail in later chapters.

One of the most useful ways to model a random signal [21] is to consider it as
being the output of a causal and stable linear filter B(z) that is driven by a stationary
uncorrelated (white-noise) sequence εn,

B(z)=
∞∑
n=0

bnz−n

where Rεε(k)= E[εn+kεn]= σ2
εδ(k). Assuming a causal input sequence εn, the output

random signal yn is obtained by convolving εn with the filter’s impulse response bn:

yn =
n∑
i=0

bn−iεi (1.11.1)

The stability of the filter B(z) is essential as it guarantees the stationarity of the
sequence yn. This point will be discussed later on. By readjusting, if necessary, the
value of σ2

ε we may assume that b0 = 1. Then Eq. (1.11.1) corresponds exactly to the
Gram-Schmidt form of Eqs. (1.5.15) and (1.5.16), where the matrix elements bni are given
in terms of the impulse response of the filter B(z):

bni = bn−i (1.11.2)

In this case, the structure of the matrix B is considerably simplified. Writing the
convolutional equation (1.11.1) in matrix form⎡⎢⎢⎢⎢⎢⎢⎣

y0

y1

y2

y3

y4

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
b1 1 0 0 0
b2 b1 1 0 0
b3 b2 b1 1 0
b4 b3 b2 b1 1

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
ε0

ε1

ε2

ε3

ε4

⎤⎥⎥⎥⎥⎥⎥⎦ (1.11.3)

we observe that the first column of B is the impulse response bn of the filter. Each
subsequent column is a down-shifted (delayed) version of the previous one, and each
diagonal has the same entry (i.e., B is a Toeplitz matrix). The lower-triangular nature of
B is equivalent to the assumed causality of the filter B(z).

Such signal models are quite general. In fact, there is a general theorem by Wold that
essentially guarantees the existence of such models for any stationary signal yn [22,23].
Wold’s construction of B(z) is none other than the Gram-Schmidt construction of the
orthogonalized basis εn. However, the practical usage of such models requires further
that the transfer function B(z) be rational, that is, the ratio of two polynomials in z−1.
In this case, the I/O convolutional equation (1.11.1) is most conveniently expressed as
a difference equation.
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Example 1.11.1: Suppose

B(z)= 1+ c1z−1 + c2z−2

1+ d1z−1 + d2z−2
(1.11.4)

Then Eq. (1.11.1) is equivalent to the difference equation

yn = −d1yn−1 − d2yn−2 + εn + c1εn−1 + c2εn−2 (1.11.5)

which may be realized as follows

The filter B(z) is called a synthesis filter and may be thought of as a random signal
generator, or a signal model, for the random signal yn. The numerator and denominator
coefficients of the filter B(z), and the variance σ2

ε of the input white noise, are referred
to as the model parameters. For instance, in Example 1.11.1 the model parameters are
{c1, c2, d1, d2, σ2

ε}.
Such parametric models have received a lot of attention in recent years. They are

very common in speech and geophysical signal processing, image processing, EEG sig-
nal processing, spectrum estimation, data compression, and other time series analysis
applications.

How are such models used? One of the main objectives in such applications has
been to develop appropriate analysis procedures for extracting the model parameters
on the basis of a given set of samples of the signal yn. This is a system identification
problem. The analysis procedures are designed to provide effectively the best fit of the
data samples to a particular model. The procedures typically begin with a measured
block of signal samples {y0, y1, . . . , yN}—also referred to as an analysis frame—and
through an appropriate analysis algorithm extract estimates of the model parameters.
This is depicted in Fig. 1.7.

Fig. 1.7 Analysis procedure.

The given frame of samples {y0, y1, . . . , yN} is represented now by the set of model
parameters extracted from it. Following the analysis procedure, the resulting model
may be used in a variety of ways. The four major uses of such models are in:

1. Signal synthesis
2. Spectrum estimation
3. Signal classification
4. Data compression

We will discuss each of these briefly. To synthesize a particular realization of the
random signal yn, it is only necessary to recall from memory the appropriate model
parameters, generate a random uncorrelated sequence εn having variance σ2

ε , and send
it through the filterB(z). Such uncorrelated sequence may be computer-generated using
a standard random number generator routine. The synthetic signal will appear at the
output of the filter. This is shown in Fig. 1.8.
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Fig. 1.8 Signal synthesis.

This is the basic principle behind most speech synthesis systems. In speech, the
synthesis filter B(z) represents a model of the transfer characteristics of the vocal tract
considered as an acoustic tube. A typical analysis frame of speech has duration of
20 msec. If sampled at a 10-kHz sampling rate, it will consist of N = 200 samples.
To synthesize a particular frame of 200 samples, the model parameters representing
that frame are recalled from memory, and the synthesis filter is run for 200 sampling
instances generating 200 output speech samples, which may be sent to a D/A converter.
The next frame of 200 samples can be synthesized by recalling from memory its model
parameters, and so on. Entire words or sentences can be synthesized in such a piece-
wise, or frame-wise, manner.

A realistic representation of each speech frame requires the specification of two
additional parameters besides the filter coefficients and σ2

ε , namely, the pitch period
and a voiced/unvoiced (V/UV) decision. Unvoiced sounds, such as the “sh” in the word
“should”, have a white-noise sounding nature, and are generated by the turbulent flow
of air through constrictions of the vocal tract. Such sounds may be represented ade-
quately by the above random signal models. On the other hand, voiced sounds, such as
vowels, are pitched sounds, and have a pitch period associated with them. They may be
assumed to be generated by the periodic excitation of the vocal tract by a train of im-
pulses separated by the pitch period. The vocal tract responds to each of these impulses
by producing its impulse response, resulting therefore in a quasi-periodic output which
is characteristic of such sounds. Thus, depending on the type of sound, the nature of
the generator of the excitation input to the synthesis filter will be different, namely, it
will be a random noise generator for unvoiced sounds, and a pulse train generator for
voiced sounds. A typical speech synthesis system that incorporates the above features
is shown in Fig. 1.9.

Fig. 1.9 Typical speech synthesis system.

Another major application of parametric models is to spectrum estimation. This is
based on the property that

Syy(ω)= σ2
ε
∣∣B(ω)∣∣2

(1.11.6)

which will be proved later. It states that the spectral shape of the power spectrum
Syy(ω) of the signal yn arises only from the spectral shape of the model filter B(ω).
For example, the signal yn generated by the model of Example 1.11.1 will have

Syy(ω)= σ2
ε

∣∣∣∣∣ 1+ c1e−jω + c2e−2jω

1+ d1e−jω + d2e−2jω

∣∣∣∣∣
2
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This approach to spectrum estimation is depicted in Fig. 1.10. The parametric ap-
proach to spectrum estimation must be contrasted with the classical approach which is
based on direct computation of the Fourier transform of the available data record, that
is, the periodogram spectrum, or its improvements. The classical periodogram method
is shown in Fig. 1.11. As we mentioned in the previous section, spectrum estimates
based on such parametric models tend to have much better frequency resolution prop-
erties than the classical methods, especially when the length N of the available data
record is short.

Fig. 1.10 Spectrum estimation with parametric models.

Fig. 1.11 Classical spectrum estimation.

In signal classification applications, such as speech recognition, speaker verification,
or EEG pattern classification, the basic problem is to compare two available blocks of
data samples and decide whether they belong to the same class or not. One of the two
blocks might be a prestored and preanalyzed reference template against which the other
block is to be compared. Instead of comparing the data records sample by sample, what
are compared are the corresponding model parameters extracted from these blocks.
In pattern recognition nomenclature, the vector of model parameters is the “feature
vector.” The closeness of the two sets of model parameters to each other is decided
on the basis of an appropriate distance measure. We will discuss examples of distance
measures for speech and EEG signals in Chapter 5. This approach to signal classification
is depicted in Fig. 1.12.

Fig. 1.12 Signal classification with parametric models.

Next, we discuss the application of such models to data compression. The signal
synthesis method described above is a form of data compression because instead of
saving the N data samples yn as such, what are saved are the corresponding model
parameters which are typically much fewer in number than N. For example, in speech
synthesis systems a savings of about a factor of 20 in memory may be achieved with
this approach. Indeed, as we discussed above, a typical frame of speech consists of 200
samples, whereas the number of model parameters typically needed to represent this
frame is about 10 to 15. The main limitation of this approach is that the reproduction
of the original signal segment is not exact but depends on the particular realization of
the computer-generated input sequence εn that drives the model. Speech synthesized
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in such manner is still intelligible, but it has lost some of its naturalness. Such signal
synthesis methods are not necessarily as successful or appropriate in all applications.
For example, in image processing, if one makes a parametric model of an image and
attempts to “synthesize” it by driving the model with a computer-generated uncorrelated
sequence, the reproduced image will bear no resemblance to the original image.

For exact reproduction, both the model parameters and the entire sequence εn must
be stored. This would still provide some form of data compression, as will be explained
below. Such an approach to data compression is widely used in digital data transmission
or digital data storage applications for all types of data, including speech and image
data. The method may be described as follows: the given data record {y0, y1, . . . , yN−1}
is subjected to an appropriate analysis algorithm to extract the model parameters, and
then the segment is filtered through the inverse filter,

A(z)= 1

B(z)
(1.11.7)

to provide the sequence εn. The inverse filter A(z) is also known as the whitening
filter, the prediction-error filter, or the analysis filter. The resulting sequence εn has
a compressed dynamic range relative to yn and therefore it requires fewer number of
bits for the representation of each sample εn. A quantitative measure for the data
compression gain is given by the ratio G = σ2

y/σ2
ε , which is always greater than one.

This can be seen easily using Eqs. (1.11.6) and (1.9.5)

σ2
y =

∫ π
−π
Syy(ω)

dω
2π

= σ2
ε

∫ π
−π

∣∣B(ω)∣∣2 dω
2π

= σ2
ε

∞∑
n=0

b2
n

Since b0 = 1, we find

G = σ
2
y

σ2
ε
=

∞∑
n=0

b2
n = 1+ b2

1 + b2
2 + · · · (1.11.8)

The entire sequence εn and the model parameters are then transmitted over the
data link, or stored in memory. At the receiving end, the original sequence yn may be
reconstructed exactly using the synthesis filter B(z) driven by εn. This approach to
data compression is depicted in Fig. 1.13. Not shown in Fig. 1.13 are the quantization
and encoding operations that must be performed on εn in order to transmit it over the
digital channel. An example that properly takes into account the quantization effects
will be discussed in more detail in Chapter 2.

Fig. 1.13 Data compression.

Filtering the sequence yn through the inverse filter requires that A(z) be stable and
causal. If we write B(z) as the ratio of two polynomials

B(z)= N(z)
D(z)

(1.11.9)

then the stability and causality of B(z) requires that the zeros of the polynomial D(z)
lie inside the unit circle in the complex z-plane; whereas the stability and causality of
the inverse A(z)= D(z)/N(z) requires the zeros of N(z) to be inside the unit circle.
Thus, both the poles and the zeros of B(z) must be inside the unit circle. Such filters
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are called minimal phase filters and will be discussed further in Chapter 3. When A(z)
is stable and causal it may be expanded in the form

A(z)=
∞∑
n=0

anz−n = 1+ a1z−1 + a2z−2 + · · · (1.11.10)

and the I/O equation of Eq. (1.11.7) becomes

εn =
n∑
i=0

aiyn−i = yn + a1yn−1 + a2yn−2 + · · · (1.11.11)

for n = 0,1,2, . . . . It may be written in matrix form εεε = Ay as⎡⎢⎢⎢⎢⎢⎢⎣
ε0

ε1

ε2

ε3

ε4

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
a1 1 0 0 0
a2 a1 1 0 0
a3 a2 a1 1 0
a4 a3 a2 a1 1

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
y0

y1

y2

y3

y4

⎤⎥⎥⎥⎥⎥⎥⎦
Both this matrix form and Eq. (1.11.11) are recognized as special cases of Eqs. (1.6.1)

and (1.6.10). According to Eq. (1.6.11), the quantity

ŷn/n−1 = −
[
a1yn−1 + a2yn−2 + · · · + any0

]
(1.11.12)

is the projection of yn on the subspace spanned by Yn−1 = {yn−1, yn−2, . . . , y0}. There-
fore, it represents the best linear estimate of yn on the basis of (all) its past values Yn−1,
that is, ŷn/n−1 is the best prediction of yn from its (entire) past. Equation (1.11.11) gives
the corresponding prediction error εn = yn − ŷn/n−1. We note here an interesting con-
nection between linear prediction concepts and signal modeling concepts [21–25], that
is, that the best linear predictor (1.11.12) determines the whitening filter A(z) which,
in turn, determines the generator model B(z)= 1/A(z) of yn. In other words, solving
the prediction problem also solves the modeling problem.

The above modeling approach to the representation of stationary time series, and
its relationship to the Gram-Schmidt construction and linear prediction was initiate by
Wold and developed further by Kolmogorov [22,24].

The most general model filter B(z) given in Eq. (1.11.9) is called an autoregressive
moving average (ARMA), or a pole-zero model. Two special cases of interest are the
moving average (MA), or all-zero models, and the autoregressive (AR), or all-pole models.
The MA model has a nontrivial numerator only, B(z)= N(z), so that B(z) is a finite
polynomial:

B(z)= 1+ b1z−1 + b2z−2 + · · · + bMz−M (MA model)

The AR model has a nontrivial denominator only, B(z)= 1/D(z), so that its inverse
A(z)= D(z) is a polynomial:

B(z) = 1

1+ a1z−1 + a2z−2 + · · · + aMz−M (AR model)

A(z) = 1+ a1z−1 + a2z−2 + · · · + aMz−M

Autoregressive models are the most widely used models, because the analysis algo-
rithms for extracting the model parameters {a1, a2, . . . , aM;σ2

ε} are fairly simple. In the
sequel, we will concentrate mainly on such models.
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1.12 Filter Model of First Order Autoregressive Process

To gain some understanding of filter models of the above type, we consider a very simple
example of a first-order recursive filter B(z) driven by a purely random sequence of
variance σ2

ε :

B(z)= 1

1− az−1

This serves also as a simple model for generating a first order Markov signal. The
signal yn is generated by the difference equation of the filter:

yn = ayn−1 + εn (1.12.1)

Let the probability of the nth sample εn be f(εn). We would like to show that

p(yn|yn−1, yn−2, . . . , y1, y0)= p(yn|yn−1)= f(εn)= f(yn − ayn−1)

which not only shows the Markov property of yn, but also how to compute the related
conditional density. Perhaps the best way to see this is to start at n = 0:

y0 = ε0 (assuming zero initial conditions)

y1 = ay0 + ε1

y2 = ay1 + ε2 , etc.

To compute p(y2|y1, y0), suppose that y1 and y0 are both given. Since y1 is given,
the third equation above shows that the randomness left in y2 arises from ε2 only. Thus,
p(y2|y1)= f(ε2). From the first two equations it follows that specifying y0 and y1 is
equivalent to specifying ε0 and ε1. Therefore, p(y2|y1, y0)= f(ε2|ε1, ε0)= f(ε2), the
last equation following from the purely random nature of the sequence εn. We have
shown that

p(y2|y1, y0)= p(y2|y1)= f(ε2)= f(y2 − ay1)

Using the results of Section 1.8, we also note

p(y2, y1, y0) = p(y2|y1)p(y1|y0)p(y0)

= f(ε2)f(ε1)f(ε0)

= f(y2 − ay1)f(y1 − ay0)f(y0)

The solution of the difference equation (1.12.1) is obtained by convolving the impulse
response of the filter B(z)

bn = anu(n) , u(n)= unit step

with the input sequence εn as follows:

yn =
n∑
i=0

biεn−i =
n∑
i=0

aiεn−i (1.12.2)

for n = 0,1,2, . . . . This is the innovations representation of yn given by Eqs. (1.5.15),
(1.5.16), and (1.11.1). In matrix form it reads:⎡⎢⎢⎢⎣

y0

y1

y2

y3

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

1 0 0 0
a 1 0 0
a2 a 1 0
a3 a2 a 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
ε0

ε1

ε2

ε3

⎤⎥⎥⎥⎦ (1.12.3)
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The inverse equation, εεε = B−1y = Ay, is obtained by writing Eq. (1.12.1) as εn =
yn − ayn−1. In matrix form, this reads⎡⎢⎢⎢⎣

ε0

ε1

ε2

ε3

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

1 0 0 0
−a 1 0 0

0 −a 1 0
0 0 −a 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
y0

y1

y2

y3

⎤⎥⎥⎥⎦ (1.12.4)

According to the discussion of Example 1.6.1, the partial correlation coefficients
can be read off from the first column of this matrix. We conclude, therefore, that all
partial correlation coefficients of order greater than two are zero. This property is in
accordance with our intuition about first order Markov processes; due to the recursive
nature of Eq. (1.12.1) a given sample, say yn, will have an indirect influence on all future
samples. However, the only direct influence is to the next sample.

Higher order autoregressive random signals can be generated by sending white noise
through higher order filters. For example, the second-order difference equation

yn = a1yn−1 + a2yn−2 + εn (1.12.5)

will generate a second-order Markov signal. In this case, the difference equation di-
rectly couples two successive samples, but not more than two. Therefore, all the partial
correlations of order greater than three will be zero. This may be seen also by writing
Eq. (1.12.5) in matrix form and inspecting the first column of the matrix A:⎡⎢⎢⎢⎢⎢⎢⎣

ε0

ε1

ε2

ε3

ε4

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
−a1 1 0 0 0
−a2 −a1 1 0 0

0 −a2 −a1 1 0
0 0 −a2 −a1 1

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
y0

y1

y2

y3

y4

⎤⎥⎥⎥⎥⎥⎥⎦

1.13 Stability and Stationarity

In this section we discuss the importance of stability of the signal generator filter B(z).
We demonstrate that the generated signal yn will be stationary only if the generating
filter is stable. And in this case, the sequence yn will become stationary only after the
transient effects introduced by the filter have died out.

To demonstrate these ideas, consider the lag-0 autocorrelation of our first order
Markov signal

Ryy(n,n) = E[y2
n]= E

[
(ayn−1 + εn)2]

= a2E[y2
n−1]+2aE[yn−1εn]+E[ε2

n]= a2Ryy(n− 1, n− 1)+σ2
ε

(1.13.1)

where we set σ2
ε = E[ε2

n] and E[yn−1εn]= 0, which follows by using Eq. (1.12.2) to get

yn−1 = εn−1 + aεn−2 + · · · + an−1ε0

and noting that εn is uncorrelated with all these terms, due to its white-noise nature.
The above difference equation for Ryy(n,n) can now be solved to get

Ryy(n,n)= E[y2
n]=

σ2
ε

1− a2
+σ2

ε

(
1− 1

1− a2

)
a2n (1.13.2)

where the initial condition was taken to be E[y2
0]= E[ε2

0]= σ2
ε . If the filter is stable and

causal, that is, |a| < 1, then the second term in (1.13.2) tends to zero exponentially, and
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Ryy(n,n) eventually loses its dependence on the absolute time n. For large n, it tends
to the steady-state value

Ryy(0)= E[y2
n]= σ2

y =
σ2
ε

1− a2
(1.13.3)

The same result is obtained, of course, by assuming stationarity from the start. The
difference equation (1.13.1) can be written as

E[y2
n]= a2E[y2

n−1]+σ2
ε

If yn is assumed to be already stationary, then E[y2
n]= E[y2

n−1]. This implies the
same steady-state solution as Eq. (1.13.3).

If the filter is unstable, that is, |a| > 1, then the second term of Eq. (1.13.2) diverges
exponentially. The marginal case a = 1 is also unacceptable, but is of historical interest
being the famous Wiener process, or random walk. In this case, the signal model is

yn = yn−1 + εn
and the difference equation for the variance becomes

Ryy(n,n)= Ryy(n− 1, n− 1)+σ2
ε

with solution
Ryy(n,n)= E[y2

n]= (n+ 1)σ2
ε

In summary, for true stationarity to set in, the signal generator filter B(z) must be
strictly stable (all its poles must be strictly inside the unit circle).

1.14 Parameter Estimation by the Maximum Likelihood Method

One of the most important practical questions is how to extract the model parameters,
such as the above filter parameter a, from the actual data values. As an introduction to
the analysis methods used to answer this question, let us suppose that the white noise
input sequence εn is gaussian

f(εn)= 1√
2πσε

exp
(− ε2

n
2σ2

ε

)
and assume that a block of N measured values of the signal yn is available

y0, y1, y2, . . . , yN−1

Can we extract the filter parameter a from this block of data? Can we also extract
the variance σ2

ε of the driving white noise εn? If so, then instead of saving the N mea-
sured values {y0, y1, y2, . . . , yN−1}, we can save the extracted filter parameter a and the
variance σ2

ε . Whenever we want to synthesize our original sequence yn, we will simply
generate a white-noise input sequence εn of variance σ2

ε , using a pseudorandom num-
ber generator routing, and then drive with it the signal model whose parameter a was
previously extracted from the original data. Somehow, all the significant information
contained in the original samples, has now been packed or compressed into the two
numbers a and σ2

ε .
One possible criterion for extracting the filter parametera is the maximum likelihood

(ML) criterion: The parameter a is selected so as to maximize the joint density

p(y0, y1, . . . , yN−1)= f(ε0)f(ε1)· · · f(εN−1)

= 1(√
2πσε

)N exp

⎡⎣− 1

2σ2
ε

N−1∑
n=1

(yn − ayn−1)2

⎤⎦ exp
[−y2

0/2σ2
ε
]
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that is, the parameter a is selected so as to render the actual measured values {y0, y1, y2,
. . . , yN−1} most likely. The criterion is equivalent to minimizing the exponent with
respect to a:

E(a)=
N−1∑
n=1

(yn − ayn−1)2+y2
0 =

N−1∑
n=0

e2
n = min (1.14.1)

where we set en = yn − ayn−1, and e0 = y0. The minimization of Eq. (1.14.1) gives

∂E(a)
∂a

= −2
N−1∑
n=1

(yn − ayn−1)yn−1 = 0 , or,

a =

N−1∑
n=1

ynyn−1

N−1∑
n−1

y2
n−1

= y0y1 + y1y2 + · · · + yN−2yN−1

y2
0 + y2

1 + · · · + y2
N−2

(1.14.2)

There is a potential problem with the above ML criterion for extracting the filter
parameter a, namely, the parameter may turn out to have magnitude greater than one,
which will correspond to an unstable filter generating the sequence yn. This is easily
seen from Eq. (1.14.2); whereas the numerator has dependence on the last sample yN−1,
the denominator does not. Therefore it is possible, for sufficiently large values of yN−1,
for the parameter a to be greater than one. There are other criteria for extracting the
Markov model parameters that guarantee the stability of the resulting synthesis filters,
such as the so-called autocorrelation method, or Burg’s method. These will be discussed
later on.

1.15 Parameter Estimation by the Yule-Walker Method

In this section, we introduce the autocorrelation or Yule-Walker method of extracting the
model parameters from a block of data. We begin by expressing the model parameters
in terms of output statistical quantities and then replace ensemble averages by time
averages. Assuming stationarity has set in, we find

Ryy(1)= E[ynyn−1]= E
[
(ayn−1 + εn)yn−1

] = aE[y2
n−1]+E[εnyn−1]= aRyy(0)

from which

a = Ryy(1)
Ryy(0)

The input parameter σ2
ε can be expressed as

σ2
ε = (1− a2)σ2

y = (1− a2)Ryy(0)

These two equations may be written in matrix form as[
Ryy(0) Ryy(1)
Ryy(1) Ryy(0)

][
1
−a

]
=

[
σ2
ε

0

]

These are called the normal equations of linear prediction. Their generalization will
be considered later on. These results are important because they allow the extraction
of the signal model parameters directly in terms of output quantities, that is, from
experimentally accessible quantities.

We may obtain estimates of the model parameters by replacing the theoretical auto-
correlations by the corresponding sample autocorrelations, defined by Eq. (1.10.1):
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â = R̂yy(1)
R̂yy(0)

=

1

N

N−1−1∑
n=0

yn+1yn

1

N

N−1∑
n=0

ynyn

= y0y1 + y1y2 + · · · + yN−2yN−1

y2
0 + y2

1 + · · · + y2
N−2 + y2

N−1

σ̂2
ε = (1− â2)R̂yy(0)

It is easily checked that the parameter â, defined as above, is always of magnitude
less than one; thus, the stability of the synthesis filter is guaranteed. Note the difference
with the ML expression. The numerators are the same, but the denominators differ by
an extra term. It is also interesting to note that the above expressions may be obtained
by a minimization criterion; known as the autocorrelation method, or the Yule-Walker
method:

E(a)=
N∑
n=0

e2
n =

N∑
n=0

(yn − ayn−1)2= min (1.15.1)

This differs from the ML criterion (1.14.1) only in the range of summation for n.
Whereas in the ML criterion the summation index n does not run off the ends of the
data block, it does so in the Yule-Walker case. We may think of the block of data as
having been extended to both directions by padding it with zeros

0, . . . ,0, y0, y1, . . . , yN−1,0,0, . . . ,0

The difference between this and the ML criterion arises from the last term in the sum

E(a)=
N∑
n=0

e2
n =

N−1∑
n=1

e2
n + e2

N =
N−1∑
n=1

(yn − ayn−1)2+(0− ayN−1)2

The Yule-Walker analysis algorithm for this first order example is summarized in
Fig. 1.14.

Fig. 1.14 Yule-Walker analysis method.

How good are â and σ̂2
ε as estimates of the model parameters a and σ2

ε? It can
be shown that they, and the maximum likelihood estimates of the previous section, are
asymptotically unbiased and consistent. The corresponding variances are given for large
N by [4–6]

E
[
(Δa)2] = 1− a2

N
, E

[
(Δσ2

ε)2] = 2σ4
ε
N

(1.15.2)

where Δa = â − a and Δσ2
ε = σ̂2

ε − σ2
ε . Such asymptotic properties are discussed in

greater detail in Chapter 6. Here, we present some simulation examples showing that
(1.15.2) are adequate even for fairly small N.

Example 1.15.1: The following N = 30 signal samples of yn have been generated by passing
zero-mean white noise through the difference equation yn = ayn−1+εn, with a = 0.8 and
σ2
ε = 1:

yn = {2.583, 2.617, 2.289, 2.783, 2.862, 3.345, 2.704, 1.527, 2.096, 2.050, 2.314,

0.438, 1.276, 0.524, −0.449, −1.736, −2.599, −1.633, 1.096, 0.348, 0.745,

0.797, 1.123, 1.031, −0.219, 0.593, 2.855, 0.890, 0.970, 0.924}
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Using the Yule-Walker method, we obtain the following estimates of the model parameters

â = 0.806 , σ2
ε = 1.17

Both estimates are consistent with the theoretically expected fluctuations about their means
given by Eq. (1.15.2), falling within the one-standard deviation intervals a± δa and σ2

ε ±
δσ2

ε , where δa and δσ2
ε are the square roots of Eq. (1.15.2). For N = 30, the numerical

values of these intervals are: 0.690 ≤ â ≤ 0.910 and 0.742 ≤ σ2
ε ≤ 1.258. Given the

theoretical and estimated model parameters, we can obtain the theoretical and estimated
power spectral densities of yn by

STH(ω)= σ2
ε∣∣1− ae−jω∣∣2 , SYW(ω)= σ̂2

ε∣∣1− âe−jω∣∣2

The periodogram spectrum based on the given length-N data block is

SPER(ω)= 1

N

∣∣∣∣∣∣
N−1∑
n=0

yne−jnω
∣∣∣∣∣∣

2

The three spectra are plotted in Fig. 1.15, in units of decibels; that is, 10 log10 S, over
the right half of the Nyquist interval 0 ≤ ω ≤ π. Note the excellent agreement of the
Yule-Walker spectrum with the theoretical spectrum and the several sidelobes of the peri-
odogram spectrum caused by the windowing of yn.

0 0.2 0.4 0.6 0.8 1
−20

−10

0

10

20

digital frequency ω  in units of π

dB

Yule−Walker vs. Periodogram Spectra

STH

SYW

Sper

Fig. 1.15 Comparison of Yule-Walker and periodogram spectrum estimates.

Example 1.15.2: The purpose of this example is to demonstrate the reasonableness of the
asymptotic variances, Eq. (1.15.2). For the first-order model defined in the previous ex-
ample, we generated 100 different realizations of the length-30 signal block yn. From
each realization, we extracted the Yule-Walker estimates of the model parameters â and
σ̂2
ε . They are shown in Figs. 1.16 and 1.17 versus realization index, together with the corre-

sponding asymptotic one-standard deviation intervals that were computed in the previous
example.

1.16 Linear Prediction and Signal Modeling

Linear prediction ideas are introduced in the context of our simple example by noting
that the least-squares minimization criteria (1.14.1) and (1.15.1)

E(a)=
∑
n
e2
n = minimum (1.16.1)
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Fig. 1.16 and Fig. 1.17 Model parameters a,σ2
ε estimated from 100 realizations of the length-30

data block yn.

essentially force each en to be small. Thus, if we reinterpret

ŷn = ayn−1

as the linear prediction of the sample yn made on the basis of just the previous sample
yn−1, then en = yn − ayn−1 = yn − ŷn may be thought of as the prediction error. The
minimization criterion (1.16.1) essentially minimizes the prediction error in an average
least-squares sense, thus attempting to make the best prediction possible.

As we mentioned in Section 1.11, the solution of the linear prediction problem pro-
vides the corresponding random signal generator model for yn, which can be used, in
turn, in a number of ways as outlined in Section 1.11. This is the main reason for our
interest in linear prediction.

A more intuitive way to understand the connection between linear prediction and
signal models is as follows: Suppose we have a predictor ŷn of yn which is not necessarily
the best predictor. The predictor ŷn is given as a linear combination of the past values
{yn−1, yn−2, . . . }:

ŷn = −
[
a1yn−1 + a2yn−2 + · · ·

]
(1.16.2)

The corresponding prediction error will be

en = yn − ŷn = yn + a1yn−1 + a2yn−2 + · · · (1.16.3)

and it may be considered as the output of the prediction-error filter A(z) (which is
assumed to be stable and causal):

A(z)= 1+ a1z−1 + a2z−2 + · · ·

Suppose further that A(z) has a stable and causal inverse filter

B(z)= 1

A(z)
= 1

1+ a1z−1 + a2z−2 + · · ·
so that yn may be expressed causally in terms of en, that is,

yn = en + b1en−1 + b2en−2 + · · · (1.16.4)

Then, Eqs. (1.16.3) and (1.16.4) imply that the linear spaces generated by the random
variables

{yn−1, yn−2, . . . } and {en−1, en−2, . . . }
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are the same space. One can pass from one set to the other by a causal and causally
invertible linear filtering operation.

Now, if the prediction ŷn of yn is the best possible prediction, then what remains after
the prediction is made—namely, the error signal en—should be entirely unpredictable
on the basis of the past values {yn−1, yn−2, . . . }. That is, en must be uncorrelated with
all of these. But this implies that en must be uncorrelated with all {en−1, en−2, . . . }, and
therefore en must be a white-noise sequence. It follows that A(z) and B(z) are the
analysis and synthesis filters for the sequence yn.

The least-squares minimization criteria of the type (1.16.1) that are based on time
averages, provide a practical way to solve the linear prediction problem and hence also
the modeling problem. Their generalization to higher order predictors will be discussed
in Chapter 5.

1.17 Cramér–Rao Bound and Maximum Likelihood

The Cramér-Rao inequality [2–5,26] provides a lower bound for the variance of unbi-
ased estimators of parameters. Thus, the best any parameter estimator can do is to
meet its Cramér-Rao bound. Such estimators are called efficient. Parameter estima-
tors based on the principle of maximum likelihood, such as the one presented in Section
1.14, have several nice properties, namely, as the number of observations becomes large,
they are asymptotically unbiased, consistent, efficient, and are asymptotically normally
distributed about the theoretical value of the parameter with covariance given by the
Cramér-Rao bound.

In this section, we present a derivation of the Cramér-Rao inequality using correla-
tion canceling methods and discuss its connection to maximum likelihood. Consider
N observations Y = {y1,y2, . . . ,yN}, where each observation is assumed to be an M-
dimensional random vector. Based on these observations, we would like to estimate a
number of (deterministic) parameters, assembled into a parameter vector λλλ. We will
write p(Y,λλλ) to indicate the dependence of the joint probability density on λλλ. As a
concrete example, consider the case of N independent scalar observations drawn from
a normal distribution with meanm and variance σ2. The joint density is

p(Y,λλλ)= (2πσ2)−N/2exp

⎡⎣− 1

2σ2

N∑
n=1

(yn −m)2

⎤⎦ (1.17.1)

For the parameter vector we may choose λλλ = [m,σ2]T, if we want to estimate both
the mean and variance.

The dependence of p(Y,λλλ) on λλλ may be expressed in terms of the gradient with
respect to λλλ of the log-likelihood function

ψψψ(Y,λλλ)≡ ∂
∂λλλ

lnp(Y,λλλ)= 1

p
∂p
∂λλλ

(1.17.2)

Expectation values with respect to the joint density will, in general, depend on the
parameter λλλ. We have the following result for the expectation value of an arbitrary
function F(Y,λλλ):

∂
∂λλλ
E[F]= E

[
∂F
∂λλλ

]
+ E[Fψψψ] (1.17.3)

Writing dY = dMy1dMy2 · · ·dMyN for the volume element over the space of obser-
vations, the proof of Eq. (1.17.3) follows from

∂
∂λλλ

∫
pFdY =

∫
∂
∂λλλ
(pF)dY =

∫
p
∂F
∂λλλ
dY +

∫
pF
∂ lnp
∂λλλ

dY
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Applying this property to F = 1, we find E[ψψψ]= 0. Applying it to ψψψ itself, that is,
F =ψψψ, we find

J ≡ E[ψψψψψψT]= E[Ψ] (1.17.4)

where

Ψ ≡ −∂ψψψ
∂λλλ

Eq. (1.17.4) is known as the Fisher information matrix based on Y. Component-wise,
we have

Jij = E[ψiψj]= E[Ψij]
where

ψi = ∂ lnp
∂λi

, Ψij = −∂ψi∂λj
= − ∂

2 lnp
∂λi∂λj

Next, we derive the Cramér-Rao bound. Let λ̂λλ(Y) be any estimator of λλλ based on Y.
Because λ̂λλ(Y) andψψψ(Y,λλλ) both depend on Y, they will be correlated with each other.
Using the correlation canceling methods of Section 1.4, we can remove these correlations
by writing

e = λ̂λλ− E[λ̂λλψψψT]E[ψψψψψψT]−1ψψψ

Then, e will not be correlated with ψψψ. Because ψψψ has zero mean, it follows that
E[λ̂λλ]= E[e]. Working with the deviations about the corresponding means, namely,
Δλλλ = λ̂λλ− E[λ̂λλ] and Δe = e− E[e], we have

Δe = Δλλλ−MJ−1ψψψ (1.17.5)

where we denoted M = E[λ̂λλψψψT]. Following Eq. (1.4.4), we obtain for the covariance of
Δe

E[ΔeΔeT]= E[ΔλλλΔλλλT]−MJ−1MT (1.17.6)

Thus, the difference of terms in the right-hand side is a positive semi-definite matrix.
This may be expressed symbolically as E[ΔeΔeT]≥ 0, or, E[ΔλλλΔλλλT]≥ MJ−1MT. The
quantity M depends on the bias of the estimator. For an unbiased estimator, M is the
identity matrix,M = I, and we obtain the Cramér-Rao inequality

cov(λ̂λλ)= E[ΔλλλΔλλλT]≥ J−1 (Cramér-Rao) (1.17.7)

The dependence of M on the bias can be seen as follows. Because λ̂λλ(Y) has no
explicit dependence on λλλ, it follows from property (1.17.3) that

M = E[λ̂λλψψψT]= ∂
∂λλλ
E[λ̂λλ]

Define the bias of the estimator as the deviation of the mean from the true value of
the parameter, that is, E[λ̂λλ]= λλλ+ b(λλλ), where b(λλλ) is the bias

M = I + ∂b

∂λλλ
≡ I + B

For an unbiased estimator, B = 0 and M = I. It follows from Eq. (1.17.6) that for
the Cramér-Rao inequality to be satisfied as an equality, it is necessary that Δe = 0
in Eq. (1.17.5), i.e., Δλλλ = MJ−1ψψψ and in the unbiased case, we obtain the condition
ψψψ = JΔλλλ:

∂
∂λλλ

lnp(Y,λλλ)= JΔλλλ = J[λ̂λλ(Y)−λλλ]
(1.17.8)

Estimators that satisfy this condition and thus, meet their Cramér-Rao bound, are
called efficient.
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Example 1.17.1: The log-likelihood function of Eq. (1.17.1) is

lnp = −N
2

ln(2π)−N
2

lnσ2 − 1

2σ2

N∑
n=1

(yn −m)2

The gradients with respect to the parametersm and σ2 are

∂ lnp
∂m

= 1

σ2

N∑
n=1

(yn −m)

∂ lnp
∂σ2

= − N
2σ2

+ 1

2σ4

N∑
n=1

(yn −m)2

(1.17.9)

The second derivatives are the matrix elements of the matrix Ψ:

Ψmm = − ∂
2 lnp
∂m∂m

= N
σ2

Ψmσ2 = − ∂
2 lnp

∂m∂σ2
= 1

σ4

N∑
n=1

(yn −m)

Ψσ2σ2 = − ∂2 lnp
∂σ2∂σ2

= − N
2σ4

+ 1

σ6

N∑
n=1

(yn −m)2

Taking expectation values, we find the matrix elements of J

Jmm = N
σ2
, Jmσ2 = 0 , Jσ2σ2 = N

2σ4

Therefore, the Cramér-Rao bound of any unbiased estimator ofm and σ2 will be[
E[ΔmΔm] E[ΔmΔσ2]
E[Δσ2Δm] E[Δσ2Δσ2]

]
≥

[
σ2/N 0

0 2σ4/N

]

Example 1.17.2: We note that the sample mean m̂ defined by Eq. (1.2.1) has variance equal to
its Cramér-Rao bound, and therefore, it is an efficient estimator. It also satisfies condition
(1.17.8). Writing

∑N
n=1 yn = Nm̂, we obtain from Eq. (1.17.9)

∂ lnp
∂m

= 1

σ2

N∑
n=1

(yn −m)= 1

σ2

⎡⎣ N∑
n=1

yn −Nm
⎤⎦ = 1

σ2
(Nm̂−Nm)= Jmm(m̂−m)

We also note that the sample variance s2 having variance 2σ4/(N − 1) meets its Cramér-
Rao bound only asymptotically. The biased definition of the sample variance, Eq. (1.2.3),
has variance given by Eq. (1.2.4). It is easily verified that it is smaller than its Cramér-Rao
bound (1.17.7). But this is no contradiction because Eq. (1.17.7) is valid only for unbiased
estimators. For a biased estimator, the lower bound MJ−1MT must be used. Equation
(1.2.4) does satisfy this bound. ��

Next, we discuss the principle of maximum likelihood. The maximum likelihood
estimator of a parameter λλλ is the value λ̂λλ that maximizes the joint density p(Y,λλλ); i.e.,

p(Y,λλλ)
∣∣
λλλ=λ̂λλ = maximum (1.17.10)

Equivalently,

ψψψ(λ̂λλ)= ∂
∂λλλ

lnp(Y,λλλ)
∣∣∣∣
λλλ=λ̂λλ

= 0 (1.17.11)

In general, this equation is difficult to solve. However, the asymptotic properties of
the solution for large N are simple enough to obtain. Assuming that λ̂λλ is near the true
value of the parameter λλλ we may expand the gradientψψψ about the true value:

ψψψ(λ̂λλ)�ψψψ+ ∂ψψψ(λλλ)
∂λλλ

(λ̂λλ−λλλ)=ψψψ−Ψ(λ̂λλ−λλλ)
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where we used the matrixΨ defined in Eq. (1.17.4). For the maximum likelihood solution,
the left-hand side is zero. Thus, solving for Δλλλ = λ̂λλ−λλλ, we obtain

Δλλλ = Ψ−1ψψψ (1.17.12)

Assuming that the N observations are independent of each other, the joint density
p(Y,λλλ) factors into the marginal densities

∏N
n=1 p(yn,λλλ). Therefore, the gradient ψψψ

will be a sum of gradients

ψψψ = ∂
∂λλλ

lnp =
N∑
n=1

∂
∂λλλ

lnp(yn,λλλ)=
N∑
n=1

ψψψn

Similarly,

Ψ = −∂ψψψ
∂λλλ
−

N∑
n=1

∂ψψψn
∂λλλ

=
N∑
N=1

Ψn

Individual terms in these sums are mutually independent. Thus, from the law of
large numbers, we can replace Ψ by its mean Ψ � E[Ψ]= J, and Eq. (1.17.12) becomes

Δλλλ = J−1ψψψ (1.17.13)

This asymptotic equation contains essentially all the nice properties of the maxi-
mum likelihood estimator. First, from E[Ψ]= 0, it follows that E[Δλλλ]= 0, or that λ̂λλ is
asymptotically unbiased. Second, its asymptotic covariance agrees with the Cramér-Rao
bound

E[ΔλλλΔλλλT]= J−1E[ψψψψψψT]J−1 = J−1JJ−1 = J−1

Thus, λ̂λλ is asymptotically efficient. The same conclusion can be reached by noting
that Eq. (1.17.13) is the same as condition (1.17.8). Third, λ̂λλ is asymptotically consistent,
in the sense that its covariance tends to zero for large N. This follows from the fact
that the information matrix for N independent observations is equal to N times the
information matrix for one observation:

J = E[Ψ]=
N∑
n=1

E[Ψn]= NE[Ψ1]= NJ1

Therefore, J−1 = J−1
1 /N tends to zero for large N. Fourth, because ψψψ is the sum

of N independent terms, it follows from the vector version of the central limit theorem
thatψψψ will be asymptotically normally distributed. Thus, so will be λ̂λλ, with mean λλλ and
covariance J−1.

Example 1.17.3: Setting the gradients (1.17.9) to zero, we obtain the maximum likelihood esti-
mates of the parametersm and σ2. It is easily verified that they coincide with the sample
mean and sample variance defined by Eqs. (1.2.1) and (1.2.3). ��

Example 1.17.4: In many applications, the mean is known to be zero and only the variance
needs to be estimated. For example, setting m = 0 in Eq. (1.17.1) we obtain the log-
likelihood

lnp = −N
2

ln(2π)−N
2

lnσ2 − 1

2σ2

N∑
n=1

y2
n

The maximum likelihood estimate of σ2 is obtained from

∂ lnp
∂σ2

= − N
2σ2

+ 1

2σ4

N∑
n=1

y2
n = 0



62 1. Random Signals

with solution

σ̂2 = 1

N

N∑
n=1

y2
n

It is easily verified that this is an unbiased estimate. It is the scalar version of Eq. (1.5.21).
Using E[y2

ny2
m]= σ4 + 2δnmσ4, which is valid for independent zero-mean gaussian yns,

we find for the variance of σ̂2

E[Δσ2Δσ2]= 2σ4

N
, where Δσ2 = σ̂2 −σ2 (1.17.14)

This agrees with the corresponding Cramér-Rao bound. Thus, σ̂2 is efficient. Equation
(1.17.14) is the scalar version of Eq. (1.5.23). ��

Example 1.17.5: Show that the multivariate sample covariance matrix, R̂, given by Eq. (1.5.21)
is the maximum likelihood estimate of R, assuming the mean is zero.

Solution: The log-likelihood function is, up to a constant

lnp(y1,y2, . . . ,yN)= −N2 ln(detR)−1

2

N∑
n=1

yTnR−1yn

The second term may be written as the trace:

N∑
n=1

yTnR−1yn = tr
[
R−1

N∑
n=1

ynyTn
] = N tr[R−1R̂]

where we used
∑N
n=1 ynyTn = NR̂. Using the matrix property ln(detR)= tr(lnR), we may

write the log-likelihood in the form

lnp = −N
2

tr
[
lnR+R−1R̂

]
The maximum likelihood solution for R satisfies ∂ lnp/∂R = 0. To solve it, we find it more
convenient to work with differentials. Using the two matrix properties

d tr(lnR)= tr(R−1dR) , dR−1 = −R−1(dR)R−1 (1.17.15)

we obtain,

d lnp = −N
2

tr
[
R−1dR−R−1(dR)R−1R̂

] = −N
2

tr
[
R−1(dR)R−1(R− R̂)] (1.17.16)

Because dR is arbitrary, the vanishing of d lnp implies R = R̂. An alternative proof is
to show that f(R)≥ f(R̂), where f(R)≡ tr(lnR + R−1R̂). This is shown easily using the
inequality x− 1− lnx ≥ 0, for x ≥ 0, with equality reached at x = 1. ��

In many applications, the desired parameterλλλ to be estimated appears only through
the covariance matrix R of the observations y, that is, R = R(λλλ). For example, we will
see in Chapter 6 that the covariance matrix of a plane wave incident on an array of two
sensors in the presence of noise is given by

R =
[
P+σ2 Pejk

Pe−jk P+σ2

]

where possible parameters to be estimated are the power P and wavenumber k of the
wave, and the variance σ2 of the background noise. Thus, λλλ = [P, k,σ2]T.

In such cases, we have the following general expression for the Fisher information
matrix J, valid for independent zero-mean gaussian observations:

Jij = N
2

tr

[
R−1 ∂R

∂λi
R−1 ∂R

∂λj

]
(1.17.17)
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Writing ∂i = ∂/∂λi for brevity, we have from Eq. (1.17.16)

∂i lnp = −N
2

tr
[
R−1∂iRR−1(R− R̂)]

Differentiating once more, we find

Ψij = −∂i∂j lnp = N
2

tr
[
∂j(R−1∂iRR−1)(R− R̂)+R−1∂iRR−1∂jR

]
Equation (1.17.17) follows now by taking expectation values Jij = E[Ψij] and noting

that the expectation value of the first term vanishes. This follows from the fact that R̂
is an unbiased estimator of R and therefore, E

[
tr

(
F(R− R̂))] = 0, for any matrix F.

1.18 Problems

1.1 Two dice are available for throwing. One is fair, but the other bears only sixes. One die is
selected as follows: A coin is tossed. If the outcome is tails then the fair die is selected, but if
the outcome is heads, the biased die is selected. The coin itself is not fair, and the probability
of bearing heads or tails is 1/3 or 2/3, respectively. A die is now selected according to this
procedure and tossed twice and the number of sixes is noted.

Let x be a random variable that takes on the value 0 when the fair die is selected or 1 if the
biased die is selected. Let y be a random variable denoting the number of sixes obtained in
the two tosses; thus, the possible values of y are 0,1,2.

(a) For all possible values of x and y, compute p(y|x), that is, the probability that the
number of sixes will be y, given that the x die was selected.

(b) For each y, compute p(y), that is, the probability that the number of sixes will be y,
regardless of which die was selected.

(c) Compute the mean number of sixes E[y].

(d) For all values of x and y, compute p(x|y), that is, the probability that we selected die
x, given that we already observed a y number of sixes.

1.2 Inversion Method. Let F(x) be the cumulative distribution of a probability density p(x).
Suppose u is a uniform random number in the interval [0,1). Show that the solution of the
equation F(x)= u, or equivalently, x = F−1(u), generates a random number x distributed
according to p(x). This is the inversion method of generating random numbers from uni-
form random numbers (see Appendix A).

1.3 Computer Experiment. Let x be a random variable with the exponential probability density

p(x)= 1

μ
e−x/μ

Show that x has mean μ and variance μ2. Determine the cumulative distribution function
F(x) of x. Determine the inverse formula x = F−1(u) for generating x from a uniform
u. Take μ = 2. Using the inversion formula and a uniform random number generator
routine, such as ran of Appendix A, generate a block of 200 random numbers x distributed
according to p(x). Compute their sample mean and sample variance, Eqs. (1.2.1) and (1.2.3),
and compare them with their theoretical values. Do the estimated values fall within the
standard deviation intervals defined by Eqs. (1.2.2) and (1.2.4)?

1.4 The Rayleigh probability density finds application in fading communication channels

p(r)= r
σ2
e−r

2/2σ2
, r ≥ 0

Using the inversion method, r = F−1(u), show how to generate a Rayleigh-distributed ran-
dom variable r from a uniform u.
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1.5 Computer Experiment. To see the effects of using a poor random number generator, replace
the routine ran of Appendix A by a poor version defined by means of the following linear
congruential generator parameters: a = 111, c = 11, and m = 151. Use this version of ran
in the gaussian generator gran.

(a) Generate 100 zero-mean unit-variance random numbers xn, n = 0,1, . . . ,99 using the
routine gran and plot them versus n. Do you observe periodicities arising from the
poor choice of ran?

(b) Repeat part (a) using the shuffled versions gran2 and ran2. Do you still observe peri-
odicities?

1.6 (a) Following the notation of Section 1.4, show the matrix identity, where H = RxyR−1
yy[

IN −H
0 IM

][
Rxx Rxy
Ryx Ryy

][
IN −H
0 IM

]T
=

[
Rxx −RxyR−1

yyRyx 0

0 Ryy

]

(b) Rederive the correlation canceling results of Eqs. (1.4.3) and (1.4.4) using this identity.

1.7 Using the matrix identity of Problem 1.6, derive directly the result of Example 1.4.1, that
is, E[x|y]= RxyR−1

yyy. Work directly with probability densities; do not use the results of
Examples 1.3.3 and 1.3.4.

1.8 Show that the orthogonal projection x̂ of a vector x onto another vector y, defined by
Eq. (1.4.5) or Eq. (1.5.18), is a linear function of x, that is, show

&A1x1 +A2x2 = A1x̂1 +A2x̂2

1.9 Suppose x consists of two components x = s + n1, a desired component s, and a noise
component n1. Suppose that y is a related noise component n2 to which we have access,
y = n2. The relationship between n1 and n2 is assumed to be linear, n1 = Fn2. For exam-
ple, s might represent an electrocardiogram signal which is contaminated by 60 Hz power
frequency pick-up noise n1; then, a reference 60 Hz noise y = n2, can be obtained from the
wall outlet.

(a) Show that the correlation canceler isH = F, and that complete cancellation of n1 takes
place.

(b) If n1 = Fn2 + v, where v is uncorrelated with n2 and s, show that H = F still, and n1

is canceled completely. The part v remains unaffected.

1.10 Signal Cancellation Effects. In the previous problem, we assumed that the reference signal y
did not contain any part related to the desired component s. There are applications, however,
where both the signal and the noise components contribute to both x and y, as for example in
antenna sidelobe cancellation. Since the reference signal y contains part of s, the correlation
canceler will act also to cancel part of the useful signal s from the output. To see this effect,
consider a simple one-dimensional example

x = s+ n1

y = n2 + εs

with n1 = Fn2, where we assume that y contains a small part proportional to the desired
signal s. Assume that n2 and s are uncorrelated. Show that the output e of the correlation
canceler will contain a reduced noise component n1 as well as a partially canceled signal s,
as follows:

e = as+ bn1 , where a = 1− Fε(1+ FεG)
1+ F2ε2G

, b = −εFGa

and G is a signal to noise ratio G = E[s2]/E[n2
1]. Note that when ε = 0, then a = 1 and

b = 0, as it should.
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1.11 Consider a special case of Example 1.4.3 defined by cn = 1, so that yn = x + vn, n =
1,2, . . . ,M. This represents the noisy measurement of a constant x. By comparing the
corresponding mean-square estimation errors E[e2], show that the optimal estimate of x
given in Eq. (1.4.9) is indeed better than the straight average estimate:

x̂av = y1 + y2 + · · · + yM
M

1.12 Recursive Estimation. Consider the subspace Yn = {y1, y2, . . . , yn} for n = 1,2, . . . ,M, as
defined in Section 1.5. Eq. (1.5.18) defines the estimate x̂ of a random vector x based on the
largest one of these subspaces, namely, YM .

(a) Show that this estimate can also be generated recursively as follows:

x̂n = x̂n−1 + Gn(yn − ŷn/n−1)

for n = 1,2, . . . ,M, and initialized by x̂0 = 0 and ŷ1/0 = 0, where x̂n denotes the
best estimate of x based on the subspace Yn and Gn is a gain coefficient given by
Gn = E[xεn]E[εnεn]−1. (Hint: Note x̂n =

∑n
i=1 E[xεi]E[εiεi]−1εi.)

(b) Show that the innovations εn = yn − ŷn/n−1 is orthogonal to x̂n−1, that is, show that
E[x̂n−1εn]= 0 for n = 1,2, . . . ,M.

(c) Let en = x−x̂n be the corresponding estimation error of x with respect to the subspace
Yn. Using Eq. (1.4.4), show that its covariance matrix can be expressed in the ε-basis
as follows

Renen = Rxx −
n∑
i=1

E[xεi]E[εiεi]−1E[εixT]

(d) The above recursive construction represents a successive improvement of the estimate
of x, as more and more yns are taken into account; that is, as the subspaces Yn are
successively enlarged. Verify that x̂n is indeed a better estimate than x̂n−1 by showing
that the mean-square estimation error Renen is smaller than the mean-square error
Ren−1en−1 . This is a very intuitive result; the more information we use the better the
estimate.

Such recursive updating schemes are the essence of Kalman filtering. In that context,
Gn is referred to as the “Kalman gain.”

1.13 The recursive updating procedure given in Problem 1.12 is useful only if the gain coefficient
Gn can be computed at each iteration n. For that, a knowledge of the relationship between
x and yn is required. Consider the case of Example 1.4.3 where yn = cnx + vn; define the
vectors

cn = [c1, c2, . . . , cn]T , yn = [y1, y2, . . . , yn]T , for n = 1,2, . . . ,M

and let x̂n and en = x − x̂n be the estimate of x on the basis of Yn and the corresponding
estimation error.

(a) Using Eq. (1.4.9), show that

x̂n = 1

1+ cTncn
cTnyn and E[e2

n]= E[xen]=
1

1+ cTncn

(b) Using Eq. (1.5.19), compute ŷn/n−1 and show that it may be expressed in the form

ŷn/n−1 = cnx̂n−1 = cn
1+ cTn−1cn−1

cTn−1yn−1

(c) Let en−1 = x− x̂n−1 be the estimation error based on Yn−1. Writing

εn = yn − ŷn/n−1 = (cnx+ vn)−cnx̂n−1 = cnen−1 + vn
show that

E[εnεn] = (1+ cTncn)(1+ cTn−1cn−1)−1

E[xεn] = cn(1+ cTn−1cn−1)−1
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(d) Show that the estimate x̂n of x can be computed recursively by

x̂n = x̂n−1 +Gn(yn − ŷn/n−1) , where Gn = cn(1+ cTncn)−1

1.14 Rederive the recursive updating equation given in Problem 1.13(d), without any reference to
innovations or projections, by simply manipulating Eq. (1.4.9) algebraically, and writing it in
recursive form.

1.15 Computer Experiment. A three-component random vector y has autocorrelation matrix

R = E[yyT]=
⎡⎢⎣ 1 2 3

2 6 14
3 14 42

⎤⎥⎦ , y =
⎡⎢⎣ y1

y2

y3

⎤⎥⎦
Carry out the Gram-Schmidt orthogonalization procedure to determine the innovations rep-
resentation y = Bεεε, where εεε = [ε1, ε2, ε3]T is a vector of uncorrelated components. The
vector y can be simulated by generating a zero-mean gaussian vector of uncorrelated com-
ponents εεε of the appropriate variances and constructing y = Bεεε. Generate N = 50 such
vectors yn, n = 1,2, . . . ,N and compute the corresponding sample covariance matrix R̂
given by Eq. (1.5.21). Compare it with the theoretical R. Is R̂ consistent with the standard
deviation intervals (1.5.23)? Repeat for N = 100.

1.16 The Gram-Schmidt orthogonalization procedure for a subspace Y = {y1, y2, . . . , yM} is ini-
tialized at the leftmost random variable y1 by ε1 = y1 and progresses to the right by suc-
cessively orthogonalizing y2, y3, and so on. It results in the lower triangular representation
y = Bεεε. The procedure can just as well be started at the rightmost variable yM and proceed
backwards as follows:

ηM = yM
ηM−1 = yM−1 − (projection of yM−1 on ηM)

ηM−2 = yM−2 − (projection of yM−2 on {ηM,ηM−1})

and so on. Show that the resulting uncorrelated vector ηηη = [η1, η2, . . . , ηM]T is related to
y = [y1, y2, . . . , yM]T by a linear transformation

y = Uηηη

where U is a unit upper-triangular matrix. Show also that this corresponds to a UL (rather
than LU) Cholesky factorization of the covariance matrix Ryy.

1.17 Since “orthogonal” means “uncorrelated,” the Gram-Schmidt orthogonalization procedure
can also be understood as a correlation canceling operation. Explain how Eq. (1.5.20) may
be thought of as a special case of the correlation canceler defined by Eqs. (1.4.1) and (1.4.2).
What are x,y, e, and H, in this case? Draw the correlation canceler diagram of Fig. 1.1 as it
applies here, showing explicitly the components of all the vectors.

1.18 Using Eq. (1.6.11), show that the vector of coefficients [an1, an2, . . . , ann]T can be expressed
explicitly in terms of the y-basis as follows:⎡⎢⎢⎢⎢⎢⎣

an1

an2

...
ann

⎤⎥⎥⎥⎥⎥⎦ = −E[yn−1yTn−1]−1E[ynyn−1] , where yn−1 =

⎡⎢⎢⎢⎢⎢⎣
yn−1

yn−2

...
y0

⎤⎥⎥⎥⎥⎥⎦
1.19 Show that the mean-square estimation error of yn on the basis ofYn−1—that is, E[ε2

n], where
εn = yn − ŷn/n−1—can be expressed as

E[ε2
n]= E[εnyn]= E[y2

n]−E[ynyTn−1]E[yn−1yTn−1]−1E[ynyn−1]
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1.20 Let an = [1, an1, an2, . . . , ann]T for n = 1,2, . . . ,M. Show that the results of the last two
problems can be combined into one enlarged matrix equation

E[ynyTn]an = E[ε2
n]un

where un is the unit-vector un = [1,0,0, . . . ,0]T consisting of one followed by n zeros, and
yn = [yn, yn−1, . . . , y1, y0]T= [yn , yTn−1]T .

1.21 The quantity ŷn/n−1 of Eq. (1.5.19) is the best estimate of yn based on all the previous ys,
namely, Yn−1 = {y0, y1, . . . , yn−1}. This can be understood in three ways: First, in terms
of the orthogonal projection theorem as we demonstrated in the text. Second, in terms of
the correlation canceler interpretation as suggested in Problem 1.17. And third, it may be
proved directly as follows. Let ŷn/n−1 be given as a linear combination of the previous ys as
in Eq. (1.6.11); the coefficients [an1, an2, . . . , ann]T are to be chosen optimally to minimize
the estimation error εn given by Eq. (1.6.10) in the mean-square sense. In terms of the
notation of Problem 1.20, Eq. (1.6.10) and the mean-square error E[ε2

n] can be written in the
compact vectorial form

εn = aTnyn , E(an)= E[ε2
n]= aTnE[ynyTn]an

The quantity E(an) is to be minimized with respect to an. The minimization must be sub-
ject to the constraint that the first entry of the vector an be unity. This constraint can be
expressed in vector form as

aTnun = 1

where un is the unit vector defined in Problem 1.20. Incorporate this constraint with a
Lagrange multiplier λ and minimize the performance index

E(an)= aTnE[ynyTn]an + λ(1− aTnun)

with respect to an, then fix λ by enforcing the constraint, and finally show that the resulting
solution of the minimization problem is identical to that given in Problem 1.20.

1.22 Show that the normal equations (1.7.12) can also be obtained by minimizing the performance
indices (1.7.10) with respect to a and b, subject to the constraints that the first element of
a and the last element of b be unity. (Hint: These constraints are expressible in the form
uTa = 1 and vTb = 1.)

1.23 Using Eq. (1.7.16), show that Eb can be expressed as the ratio of the two determinants Eb =
detR/det R̄.

1.24 Show Eqs. (1.7.28) and (1.7.35).

1.25 A random signal x(n) is defined as a linear function of time by

x(n)= an+ b

where a and b are independent zero-mean gaussian random variables of variances σ2
a and

σ2
b, respectively.

(a) Compute E
[
x(n)2

]
.

(b) Is x(n) a stationary process? Is it ergodic? Explain.

(c) For each fixed n, compute the probability density p
(
x(n)

)
.

(d) For each fixed n andm (n 	=m), compute the conditional probability density function
p
(
x(n)|x(m)) of x(n) given x(m). (Hint: x(n)−x(m)= (n−m)b.)

1.26 Compute the sample autocorrelation of the sequences

(a) yn = 1, for 0 ≤ n ≤ 10.

(b) yn = (−1)n, for 0 ≤ n ≤ 10.

in two ways: First in the time domain, using Eq. (1.10.1), and then in the z-domain, using
Eq. (1.10.3) and computing its inverse z-transform.
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1.27 FFT Computation of Autocorrelations. In many applications, a fast computation of sample
autocorrelations or cross-correlations is required, as in the matched filtering operations in
radar data processors. A fast way to compute the sample autocorrelation R̂yy(k) of a length-
N data segment y = [y0, y1, . . . , yN−1]T is based on Eq. (1.10.5) which can be computed
using FFTs. Performing an inverse FFT on Eq. (1.10.5), we find the computationally efficient
formula

R̂yy(k)= 1

N
IFFT

[∣∣FFT(y)
∣∣2]

(P.1)

To avoid wrap-around errors introduced by the IFFT, the length N′ of the FFT must be se-
lected to be greater than the length of the function R̂yy(k). Since R̂yy(k) is double-sided with
an extent −(N− 1)≤ k ≤ (N− 1), it will have length equal to 2N− 1. Thus, we must select
N′ ≥ 2N − 1. To see the wrap-around effects, consider the length-4 signal y = [1,2,2,1]T .

(a) Compute R̂yy(k) using the time-domain definition.

(b) Compute R̂yy(k) according to Eq. (P.1) using 4-point FFTs.

(c) Repeat using 8-point FFTs.

1.28 Computer Experiment.

(a) Generate 1000 samples x(n), n = 0,1, . . . ,999, of a zero-mean, unit-variance, white
gaussian noise sequence.

(b) Compute and plot the first 100 lags of its sample autocorrelation, that is, R̂yy(k), for
k = 0,1, . . . ,99. Does R̂yy(k) look like a delta function δ(k)?

(c) Generate 10 different realizations of the length-1000 sequence x(n), and compute 100
lags of the corresponding sample autocorrelations. Define an average autocorrelation
by

R̂(k)= 1

10

10∑
i=1

R̂i(k) , k = 0,1, . . . ,99,

where R̂i(k) is the sample autocorrelation of the ith realization of x(n). Plot R̂(k)
versus k. Do you notice any improvement?

1.29 A 500-millisecond record of a stationary random signal is sampled at a rate of 2 kHz and
the resulting N samples are recorded for further processing. What is N? The record of N
samples is then divided into K contiguous segments, each of length M, so that M = N/K.
The periodograms from each segment are computed and averaged together to obtain an
estimate of the power spectrum of the signal. A frequency resolution of Δf = 20 Hz is
required. What is the shortest lengthM that will guarantee such resolution? (LargerMs will
have better resolution than required but will result in a poorer power spectrum estimate
because K will be smaller.) What is K in this case?

1.30 A random signal yn is generated by sending unit-variance zero-mean white noise εn through
the filters defined by the following difference equations:

1. yn = −0.9yn−1 + εn
2. yn = 0.9yn−1 + εn + εn−1

3. yn = εn + 2εn−1 + εn−2

4. yn = −0.81yn−2 + εn
5. yn = 0.1yn−1 + 0.72yn−2 + εn − 2εn−1 + εn−2

(a) For each case, determine the transfer function B(z) of the filter and draw its canonical
implementation form, identify the set of model parameters, and decide whether the
model is ARMA, MA, or AR.

(b) Write explicitly the power spectrum Syy(ω) using Eq. (1.11.6).

(c) Based on the pole/zero pattern of the filter B(z), draw a rough sketch of the power
spectrum Syy(ω) for each case.
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1.31 Computer Experiment.

Two different realizations of a stationary random signal
y(n), n = 0,1, . . . ,19 are given. It is known that this
signal has been generated by a model of the form

y(n)= ay(n− 1)+ε(n)

where ε(n) is gaussian zero-mean white noise of variance
σ2
ε .

(a) Estimate the model parameters a and σ2
ε using the

maximum likelihood criterion for both realizations.
(The exact values were a = 0.95 and σ2

ε = 1.)

(b) Repeat using the Yule-Walker method.

This type of problem might, for example, arise in speech
processing where y(n) might represent a short segment
of sampled unvoiced speech from which the filter parame-
ters (model parameters) are to be extracted and stored for
future regeneration of that segment. A realistic speech
model would of course require a higher-order filter, typi-
cally, of order 10 to 15.

n y(n) y(n)
0 3.848 5.431
1 3.025 5.550
2 5.055 4.873
3 4.976 5.122
4 6.599 5.722
5 6.217 5.860
6 6.572 6.133
7 6.388 5.628
8 6.500 6.479
9 5.564 4.321

10 5.683 5.181
11 5.255 4.279
12 4.523 5.469
13 3.952 5.087
14 3.668 3.819
15 3.668 2.968
16 3.602 2.751
17 1.945 3.306
18 2.420 3.103
19 2.104 3.694

1.32 Computer Experiment.

(a) Using the Yule-Walker estimates {â, σ̂2
ε} of the model parameters extracted from the

first realization of y(n) given in Problem 1.31, make a plot of the estimate of the power
spectrum following Eq. (1.11.6), that is,

Ŝyy(ω)= σ̂2
ε

|1− âe−jω|2
versus frequencyω in the interval 0 ≤ω ≤ π.

(b) Also, plot the true power spectrum

Syy(ω)= σ2
ε

|1− ae−jω|2
defined by the true model parameters {a,σ2

ε} = {0.95,1}.
(c) Using the given data values y(n) for the first realization, compute and plot the corre-

sponding periodogram spectrum of Eq. (1.10.5). Preferably, plot all three spectra on
the same graph. Compute the spectra at 100 or 200 equally spaced frequency points
in the interval [0,π]. Plot all spectra in decibels.

(d) Repeat parts (a) through (c) using the second realization of y(n).

Better agreement between estimated and true spectra can be obtained using Burg’s analysis
procedure instead of the Yule-Walker method. Burg’s method performs remarkably well
on the basis of very short data records. The Yule-Walker method also performs well but it
requires somewhat longer records. These methods will be compared in Chapter 6.

1.33 In addition to the asymptotic results (1.15.2) for the model parameters, we will show in
Chapter 6 that the estimates of filter parameter and the input variance are asymptotically
uncorrelated, E[ΔaΔσ2

ε]= 0. Using this result and Eq. (1.15.2), show that the variance of
the spectrum estimate is given asymptotically by

E
[
ΔS(ω)ΔS(ω)

] = 2S(ω)2

N

[
1+ 2(1− a2)(cosω− a)2

(1− 2a cosω+ a2)2

]

where ΔS(ω)= Ŝ(ω)−S(ω), with the theoretical and estimated spectra given in terms of
the theoretical and estimated model parameters by

S(ω)= σ2
ε

|1− ae−jω|2 , Ŝ(ω)= σ̂2
ε

|1− âe−jω|2
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1.34 For any positive semi-definite matrix B show the inequality tr(B− I− lnB)≥ 0 with equality
achieved for B = I. Using this property, show the inequality f(R)≥ f(R̂), where f(R)=
tr(lnR+ R−1R̂). This implies the maximum likelihood property of R̂, discussed in Section
1.17.

1.35 Show the following three matrix properties used in Section 1.17:

ln(detR)= tr(lnR) , d tr(lnR)= tr(R−1dR) , dR−1 = −R−1 dRR−1

(Hints: for the first two, use the eigenvalue decomposition of R; for the third, start with
R−1R = I.)
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2
Some Signal Processing Applications

In the next few sections, we shall present some applications of the random signal con-
cepts that we introduced in the previous chapter. We shall discuss system identification
by cross-correlation techniques, design simple filters to remove noise from noisy mea-
surements, apply these concepts to the problem of quantization effects in digital filter
structures, introduce the problem of linear prediction and its iterative solution through
Levinson’s algorithm, and discuss a data compression example.

2.1 Filtering of Stationary Random Signals

In this section, we discuss the effect of linear filtering on random signals. The results are
very basic and of importance in suggesting guidelines for the design of signal processing
systems for many applications of random signals [l–3].

Suppose a stationary random signal xn is sent into a linear filter defined by a transfer
function H(z). Let yn be the output random signal. Our objective is to derive relation-
ships between the autocorrelation functions of the input and output signals, and also
between the corresponding power spectra

H(z)=
∞∑
n=0

hnz−n

Using the input/output filtering equation in the z-domain

Y(z)= H(z)X(z) (2.1.1)

we determine first a relationship between the periodograms of the input and output
signals. Using the factorization (1.10.3) and dropping the factor 1/N for convenience,
we find

Ŝyy(z) = Y(z)Y(z−1)

= H(z)X(z)H(z−1)X(z−1)= H(z)H(z−1)X(z)X(z−1)

= H(z)H(z−1)Ŝxx(z)= Shh(z)Ŝxx(z)
(2.1.2)

where we used the notation Shh(z)= H(z)H(z−1). This quantity is the z-transform of
the sample autocorrelation of the filter, that is,

Shh(z)= H(z)H(z−1)=
∞∑

k=−∞
Rhh(k)z−k (2.1.3)
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where Rhh(k) is the filter’s autocorrelation function

Rhh(k)=
∑
n
hn+khk (2.1.4)

Equation (2.1.3) is easily verified by writing:

Rhh(k)=
∞∑
i,j=0

hihjδ
(
k− (i− j))

Taking inverse z-transforms of Eq. (2.1.2), we find the time-domain equivalent relation-
ships between input and output sample autocorrelations

R̂yy(k)=
∞∑

m=−∞
Rhh(k)R̂xx(k−m)= convolution of Rhh with R̂xx (2.1.5)

Similarly, we find for the cross-periodograms

Ŝyx(z)= Y(z)X(z−1)= H(z)X(z)X(z−1)= H(z)Ŝxx(z) (2.1.6)

and also, replacing z by z−1,

Ŝxy(z)= Ŝxx(z)H(z−1) (2.1.7)

The same relationships hold for the statistical autocorrelations and power spectra.
In the z-domain the power spectral densities are related by

Syy(z) = H(z)H(z−1)Sxx(z)

Syx(z) = H(z)Sxx(z)
Sxy(z) = Sxx(z)H(z−1)

(2.1.8)

Setting z = ejω, we may also write Eq. (2.1.8) in terms of the corresponding power
spectra:

Syy(ω) = |H(ω)|2Sxx(ω)
Syx(ω) = H(ω)Sxx(ω)
Sxy(ω) = Sxx(ω)H(−ω)= Sxx(ω)H(ω)∗

(2.1.9)

In the time domain, the correlation functions are related by

Ryy(k) =
∞∑

m=−∞
Rhh(m)Rxx(k−m)

Ryx(k) =
∞∑

m=−∞
hmRxx(k−m)

(2.1.10)

The proof of these is straightforward; for example, to prove Eq. (2.1.10), use stationarity
and the I/O convolutional equation

yn =
∞∑
m=0

hmxn−m

to find

Ryy(k) = E[yn+kyn]= E
⎡⎣ ∞∑
i=0

hixn+k−i
∞∑
j=0

hjxn−j

⎤⎦
=

∞∑
i,j=0

hihjE[xn+k−ixn−j]=
∞∑
i,j=0

hihjRxx
(
k− (i− j))

=
∞∑
i,j,m

hihjδ
(
m− (i− j))Rxx(k−m)=∑

m
Rhh(m)Rxx(k−m)
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An important special case is when the input signal is white with variance σ2
x :

Rxx(k)= E[xn+kxn]= σ2
xδ(k) , Sxx(z)= σ2

x (2.1.11)

Then, Eqs. (2.1.8) through (2.1.10) simplify into

Syy(z) = H(z)H(z−1)σ2
x

Syx(z) = H(z)σ2
x

(2.1.12)

and
Syy(ω) = |H(ω)|2σ2

x

Syx(ω) = H(ω)σ2
x

(2.1.13)

and

Ryy(k) = σ2
x

∞∑
n=0

hn+khn

Ryx(k) = σ2
x hk

(2.1.14)

These results show how the filtering operation reshapes the flat white-noise spec-
trum of the input signal into a shape defined by the magnitude response |H(ω)|2 of the
filter, and how the filtering operation introduces self-correlations in the output signal.
Equation (2.1.13) is also the proof of the previously stated result (1.11.6).

As an example, consider the first-order Markov signal yn defined previously as the
output of the filter

yn = ayn−1 + εn , H(z)= 1

1− az−1

driven by white noise εn of variance σ2
ε . The impulse response of the filter is

hn = anu(n) , u(n)= unit step

The output autocorrelation Ryy(k)may be computed in two ways. First, in the time
domain (assuming first that k ≥ 0):

Ryy(k)= σ2
ε

∞∑
n=0

hn+khn = σ2
ε

∞∑
n=0

an+kan = σ2
ε ak

∞∑
n=0

a2n = σ2
εak

1− a2

And second, in the z-domain using power spectral densities and inverse z-transforms
(again take k ≥ 0):

Syy(z) = H(z)H(z−1)σ2
ε =

σ2
ε

(1− az−1)(1− az)

Ryy(k) =
∮

u.c
Syy(z)zk

dz
2πjz

=
∮

u.c.

σ2
εzk

(z− a)(1− az)
dz

2πj

= (Residue at z = a) = σ2
εak

1− a2

In particular, we verify the results of Section 1.14:

Ryy(0)= σ2
ε

1− a2
, Ryy(1)= σ2

εa
1− a2

= aRyy(0)

a = Ryy(1)
Ryy(0)

, σ2
ε = (1− a2)Ryy(0)

It is interesting to note the exponentially decaying nature of Ryy(k) with increasing
lag k, as shown in Fig. 2.1. We noted earlier that direct correlations exist only between
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samples separated by lag one; and that indirect correlations also exist due to the indirect
influence of a given sample yn on all future samples, as propagated by the difference
equation. In going from one sampling instant to the next, the difference equation scales
yn by a factor a; therefore, we expect these indirect correlations to decrease fast (expo-
nentially) with increasing lag.

Fig. 2.1 Exponentially decaying autocorrelation.

Whenever the autocorrelation drops off very fast with increasing lag, this can be
taken as an indication that there exists a stable difference equation model for the random
signal.

However, not all random signals have exponentially decaying autocorrelations. For
example, a pure sinusoid with random phase

yn = A cos(ω0n+φ)
where φ is a uniformly-distributed random phase, has autocorrelation

Ryy(k)= 1

2
A2 cos(ω0k)

which never dies out. A particular realization of the random variable φ defines the
entire realization of the time series yn. Thus, as soon as φ is fixed, the entire yn is
fixed. Such random signals are called deterministic, since a few past values—e.g., three
samples—of yn are sufficient to determine all future values of yn.

2.2 System Identification by Cross-Correlation Methods

The filtering results derived in Section 2.1 suggest a system identification procedure to
identify an unknown systemH(z) on the basis of input/output measurements: Generate
pseudorandom white noise xn, send it through the unknown linear system, and compute
the cross-correlation of the resulting output sequence yn with the known sequence xn.
According to Eq. (2.1.14), this cross-correlation is proportional to the impulse response
of the unknown system. This identification scheme is shown in Fig. 2.2.

Fig. 2.2 System identification.

A simulated example is shown in Fig. 2.3. The system H(z) was defined by a sinu-
soidally damped impulse response of length 50, given by

hk = (0.95)kcos(0.1πk) , 0 ≤ k ≤ 50 (2.2.1)
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Fig. 2.3 System identification by cross-correlation.

Using a random number generator routine, 1500 samples of a unit-variance zero-
mean white-noise sequence xn were generated and filtered through the filterH to obtain
the output sequence yn. Then, the first 50 lags of the sample cross-correlation were
computed according to

R̂yx(k)= 1

N

N−1−k∑
n=0

yn+kxn

with N = 1500 and k = 0,1, . . . ,50. Figure 2.3 shows the impulse response identi-
fied according to hk = R̂yx(k)/σ2

x = R̂yx(k), plotted together with the exact response
defined by Eq. (2.2.1).

Other system identification techniques exist that are based on least-squares error
criteria. They can be formulated off-line or on-line using adaptive methods [4–10]. Such
identification techniques are intimately connected to the analysis procedures of extract-
ing the model parameters of signal models, as we discussed in Section 1.11.

2.3 Noise Reduction and Signal Enhancement Filters

In signal processing applications for noise removal, or signal enhancement, the ratio
σ2
y/σ2

x plays an important role. We have

σ2
y =

∫ π
−π
Syy(ω)

dω
2π

=
∫ π
−π

∣∣H(ω)∣∣2Sxx(ω)
dω
2π

= σ2
x

∫ π
−π

∣∣H(ω)∣∣2 dω
2π

provided xn is white noise. The ratio σ2
y/σ2

x determines whether the input noise is
amplified or attenuated as it is filtered through H(z). It will be referred to as the noise
reduction ratio. Using Parseval’s identity, we find the alternative expressions for it

σ2
y

σ2
x
=

∫ π
−π

∣∣H(ω)∣∣2 dω
2π

=
∞∑
n=0

|hn|2 =
∮

u.c.
H(z)H(z−1)

dz
2πjz

(2.3.1)

We may denote any one of these as ‖H‖2, that is, the quadratic norm of H. Com-
putationally, the most recommended procedure is by the contour integral, and the least
recommended, by the frequency integral. Use the contour formula for IIR filters and the
sum of impulse response squared for FIR filters.

Example 2.3.1: Compute the noise reduction ratio of white noise sent through the first order
recursive filter

H(z)= 1

1− az−1
,

σ2
y

σ2
x
=

∞∑
n=0

|hn|2 =
∞∑
n=0

a2n = 1

1− a2
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The alternative derivation using contour integration has already been done. ��

Consider now the problem of extracting a signal xn from the noisy measurements yn

yn = xn + vn
where the measurement noise vn is typically white noise. We wish to design a filter
H(z) to process the available measurements yn to remove the noise component without
affecting the signal component. (Our notation throughout uses the symbol yn to denote
the available noisy measurements, and xn to denote the desired signal to be extracted.)
These two requirements are illustrated in Fig. 2.4.

Fig. 2.4 Signal processor requirements.

Often, the separation of signal from noise can be done on the basis of bandwidth.
If the power spectra of the signal and noise components occupy separate frequency
bands, then their separation is easy: Simply design a filter whose frequency response is
zero over the entire band over which there is significant noise power, and equal to unity
over the band of the signal. An example of this situation arises in Doppler radar, which
is designed to detect moving objects; the returned echo signal includes a considerable
amount of clutter noise arising from the radar pulses bouncing off stationary objects
such as trees, buildings, and the like. The frequency spectrum of the clutter noise is
mainly concentrated near DC, whereas the spectrum of the desired signal from moving
targets occupies a higher frequency band, not overlapping with the clutter.

On the other hand, if the noise is white, its power spectrum will extend over all
frequencies, and therefore it will overlap with the signal band. For example, suppose
the signal and noise have power spectra as shown in Fig. 2.5.

Fig. 2.5 Signal and noise spectra before processing.

If we design an ideal bandpass filterH(ω)whose passband includes the signal band,
then after filtering, the output power spectra will look as in Fig. 2.6. A lot of noise energy
is removed by the filter, thus tending to reduce the overall output noise variance

σ2
v̂ =

∫ π
−π
Sv̂v̂(ω)

dω
2π

At the same time, the signal spectrum is left undistorted. Some knowledge of the fre-
quency spectra for the desired signal and the interfering noise was required in order to
design the filter. The basic idea was to design a filter whose passband coincided with
the spectral band of the desired signal, and whose stopband coincided with the spectral
band of the noise. Clearly, if noise and signal have highly overlapping spectra, such
simple signal processing design techniques will not be successful. Thus, an important
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question arises: For a given signal spectrum and noise spectrum, what is the best linear
filter to separate noise from signal? The answer will lead to the methods of Wiener or
optimal filtering to be discussed later on. In the remainder of this section, we present
four examples illustrating the above ideas.

Fig. 2.6 Signal and noise spectra after processing.

Example 2.3.2: Clutter Rejection Filters in Coherent MTI Radar. By taking advantage of the
Doppler effect, moving target indicator (MTI) radar systems [11] can distinguish between
weak echo returns from small moving objects and strong echo returns from stationary
objects (clutter), such as trees, buildings, the sea, the weather, and so on. An MTI radar
sends out short-duration sinusoidal pulses of some carrier frequency, say f0. The pulses
are sent out every T seconds (the pulse repetition interval). A pulse reflected from a target
moving with velocity v will suffer a Doppler frequency shift to f0 + f , where f is the
Doppler shift given by

f = 2v
λ0
= 2v
c
f0

The receiver maintains a phase-coherent reference carrier signal, so that the target echo
signal and the reference signal can be heterodyned to leave only the relative frequency
shift; that is, the Doppler shift. Thus, after the removal of the carrier, the returned echo
pulses will have a basic sinusoidal dependence

exp(2πjft)

Clutter returns from truly stationary objects (v = 0)will correspond to the DC component
(f = 0) of the returned signal. But, clutter returns from slightly nonstationary objects such
as trees or the weather, will not be exactly DC and will be characterized by a small frequency
spread about DC. Thus, a typical clutter spectrum will occupy a narrow frequency band
about DC as shown:

Subsequent processing with a clutter rejection filter can remove the clutter frequency com-
ponents. According to the previous discussion, such a filter must essentially be an ideal
high pass filter with a low frequency stopband that coincides with the clutter spectral band.

Since the MTI system is a pulsed system with period T, such a filter can be designed
as simple tapped delay line using delays of T seconds, as shown in Fig. 2.7, where z−1

represents a delay by T seconds. The I/O equation of this filter is

y(t)=
M∑
m=0

amx(t −mT)

with transfer function

H(z)= a0 + a1z−1 + a2z−2 + · · · + aMz−M
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Fig. 2.7 Tapped delay line clutter rejection filter.

Its frequency response is obtained by setting z = ejω = e2πjfT . Due to the sampled-data
nature of this problem, the frequency response of the filter is periodic in f with period
fs = 1/T, that is, the pulse repetition frequency. An ideally designed clutter filter would
vanish over the clutter passband, as shown in Fig. 2.8.

Fig. 2.8 Frequency response of clutter rejection filter.

Because of the periodic nature of the frequency response, the filter will also reject the
frequency bands around multiples of the sampling frequency fs. If a target is moving at
speeds that correspond to such frequencies, that is,

nfs = 2v
c
f0 , n = 1,2,3, . . .

then such a target cannot be seen; it also gets canceled by the filter. Such speeds are known
as “blind speeds.” In practice, the single and double delay high-pass filters

H(z) = 1− z−1

H(z) = (1− z−1)2= 1− 2z−1 + z−2

are commonly used. Nonrecursive tapped delay-line filters are preferred over recursive
ones, since the former have short transient response; that is,MT seconds for a filter with
M delays. ��

Example 2.3.3: Radar measurements of the Earth-Moon distance D are taken of the form

yn = D+ vn

where vn is zero-mean white noise of variance σ2
v representing measurement errors. Two

signal processing schemes are to be compared as to their noise reduction and signal en-
hancing capability:

a recursive filter and a nonrecursive filter
ŷn = aŷn−1 + byn ŷn = ayn + byn−1

Discuss the selection of the filter parameters so that on the one hand they do not distort
the desired signal, and on the other they tend to reduce the noise. Discuss any tradeoffs
and compare the two cases. The transfer functions of the two filters are

H(z)= b
1− az−1

and H(z)= a+ bz−1
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The desired signal xn = D must be able to go through these filters entirely undistorted.
Since it is a DC signal, we require the frequency response H(ω) to be unity at zero fre-
quencyω = 0, or equivalently, at z = ejω = 1

H(1)= b
1− a = 1 and H(1)= a+ b = 1

In both cases, we find the constraint b = 1− a, so that

H(z)= 1− a
1− az−1

and H(z)= a+ (1− a)z−1

Both of these filters will allow the DC constant signal xn = D to pass through undistorted.
There is still freedom in selecting the parameter a. The effectiveness of the filter in reduc-
ing the noise is decided on the basis of the noise reduction ratio

σ2
y

σ2
x
= (1− a)

2

1− a2
= 1− a

1+ a and
σ2
y

σ2
x
= a2 + b2 = a2 + (a− 1)2

These are easily derived using either the contour integral formula, or the sum of the im-
pulse responses squared. Effective noise reduction will be achieved if these ratios are
made as small as possible. For the recursive case, stability of the filter requires a to be
−1 < a < 1. The requirement that the noise ratio be less than one further implies that
0 < a < 1. And it becomes smaller the closer a is selected to one. For the nonrecursive
case, the minimum value of the noise ratio is obtained when a = 0.5. The graphical com-
parison of the noise reduction ratios in the two cases suggests that the recursive filter will
do a much better job than the nonrecursive one.

But there is a price to be paid for that. The closer a is to unity—that is, the closer the pole
is moved to the unit circle—the slower the response of the filter will be, as can be seen by
inspecting the impulse response of the filter

hn = ban , n ≥ 0

The effectiveness of the recursive filter may also be seen by plotting its magnitude response
versus frequency for various values of a, as in Fig. 2.9.

Fig. 2.9 Magnitude response for various values of a.

As the parameter a tends to one, the filter’s response becomes more and more narrow
around the frequency ω = 0 (this is the signal band in this case). Therefore, the filter is
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able to remove more power from the noise. Finally, we should not leave the impression
that nonrecursive filters are always bad. For example, if we allow a filter with, say,M taps

ŷn = 1

M
(yn + yn−1 + · · · + yn−M)

the noise ratio is easily found to be

σ2
y

σ2
x
=

M∑
n=0

h2
n =

1

M2
(1+ 1+ · · · + 1)= M

M2
= 1

M

which can be made as small as desired by increasing the number of tapsM.

Figures 2.10 through 2.16 demonstrate the various ideas behind this example. Figure
2.10 shows 100 samples of a zero-mean white gaussian noise vn of variance σ2

v = 100,
generated by means of a standard gaussian random number generator subroutine. Next,
these samples were filtered by the first order recursive filter v̂n = av̂n−1+ (1−a)vn, with
the parameter a chosen as a = 0.95. Figure 2.11 shows the lowpass filtering effect as
well as the noise-reducing property of this filter. The output signal v̂n has been plotted
together with the white noise input vn
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Fig. 2.10 Zero-mean white noise. Fig. 2.11 Filtered white noise.
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Fig. 2.12 Autocorrelation of white noise. Fig. 2.13 Autocorrelation of filtered noise.

Figures 2.12 and 2.13 show a comparison of the theoretically expected autocorrelations
and the experimentally computed sample autocorrelations from the actual sample values,
both for the input and the output signals. The theoretical autocorrelations are

Rvv(k)= σ2
vδ(k) , Rv̂v̂(k)= Rv̂v̂(0)a|k|
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Figures 2.14 through 2.16 show the interplay between noise reduction and speed of re-
sponse of the filter as the filter parameter a is gradually selected closer and closer to
unity. The values a = 0.8, 0.9, and 0.95 were tried. The input to the filter was the noisy
measurement signal yn = D+ vn and the output ŷn was computed by iterating the differ-
ence equation of the filter starting with zero initial conditions. ��
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Fig. 2.14 a = 0.80. Fig. 2.15 a = 0.90. Fig. 2.16 a = 0.95.

Example 2.3.4: A digital AM receiver is to lock onto a carrier signal of frequency of 10 kHz.
The available signal consists of the carrier signal plus white noise. If the available signal
is sampled at a rate of 40 kHz, show that its samples will be of the form

yn = xn + vn = cos(πn/2)+vn

where the first term represents the sampled carrier and the second the noise. To separate
the signal from the noise, a 2nd order filter is used of the form

ŷn = −a2ŷn−2 + (1− a2)yn

Discuss the noise reduction properties of this filter. Again, this filter has been chosen
so that the desired signal which is a sinusoid of frequency ω0 = π/2 will pass through
unchanged. That is, at z = ejω0 = ejπ/2 = j, the frequency response must be unity

H(z)= 1− a2

1+ a2z−2
with H(z)

∣∣
z=j =

1− a2

1− a2
= 1

The noise reduction ratio is most easily computed by the contour integral

σ2
y

σ2
x
=

∮
u.c.
H(z)H(z−1)

dz
2πjz

=
∮

u.c.

(1− a2)2z
(z− ja)(z+ ja)(1+ a2z2)

dz
2πj

= (sum of residues at z = ±ja) = (1− a
2)2

1− a4
= 1− a2

1+ a2

Selecting the poles ±ja to be near the unit circle (from inside) will result in a slow but
efficient filter in reducing the noise component. ��

Example 2.3.5: Signal Enhancement by Digital Averaging. Signal averaging computers are rou-
tinely used to improve the signal to noise ratio of signals that are corrupted by noise and
can be measured repeatedly—for example, in measuring evoked action potentials using
scalp electrodes, or in integrating successive returns in pulsed radar. A similar concept
is also used in the so-called “beamforming” operation in sonar and radar arrays. The ob-
jective is to measure a signal x(n) of duration of N samples, n = 0,1, . . . ,N − 1. The
measurement can be performed (evoked) repeatedly. A total ofM such measurements are
performed and the results are averaged by the signal averaging computer. Let the results
of themth measurement, form = 1,2, . . . ,M, be the samples

ym(n)= x(n)+vm(n) , n = 0,1, . . . ,N − 1
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A signal averaging computer averages (integrates) the results of theM measurements

x̂(n)= 1

M

M∑
m=1

ym(n) for n = 0,1, . . . ,N − 1

by accumulating (integrating) theM measurements, as shown in the following diagram

The result of the averaging operation may be expressed as

x̂(n)= 1

M

M∑
m=1

ym(n)= 1

M

M∑
m=1

[
x(n)+vm(n)

] = x(n)+v̂(n)
where

v̂(n)= 1

M

M∑
m=1

vm(n)

Assuming vm(n) to be mutually uncorrelated; that is, E
[
vm(n)vi(n)

] = σ2
vδmi, we com-

pute the variance of the averaged noise v̂(n):

σ2
v̂ = E

[
v̂2(n)

] = 1

M2

M∑
m,i=1

E
[
vm(n)vi(n)

] = 1

M2

M∑
m,i=1

σ2
vδmi

= 1

M2
(σ2

v +σ2
v + · · · +σ2

v)=
1

M2
Mσ2

v =
1

M
σ2
v

Therefore, the signal to noise ratio (SNR) is improved by a factor ofM.

The routine sigav (Appendix B) performs signal averaging. Its inputs are the file containing
the data points to be averaged, the periodN, and the numberM of periods to be averaged.
Its output is the averaged signal x̂(n), n = 0,1, . . . ,N − 1. ��

2.4 Quantization Noise

In digital filtering operations, such as the one shown in the following diagram, one must
deal with the following types of quantization errors [2,3,12]:

1. Quantization of the input samples xn due to the A/D conversion
2. Quantization of the filter coefficients ai, bi
3. Roundoff errors from the internal multiplications

A typical uniform quantization operation of a sampled signal is shown in Fig. 2.17.
The spacing between levels is denoted by Q and the overall range of variation of the
signal by R. If b bits are assigned to represent each sample value, then the total number
of representable signal values is 2b, and therefore the number of levels that can fit within
the range R is

2b = R
Q



84 2. Some Signal Processing Applications

Fig. 2.17 Uniform quantizer.

which also leads to the so-called “6 dB per bit” rule for the dynamic range of the quantizer

dB = 10 log10

(
R
Q

)2

= b20 log10(2)= 6b decibels

The quantization operation may be represented as

where [xn] denotes the quantized value of xn; that is, the nearest level. The quantization
error is δn = [xn]−xn. The quantization operation may be replaced by an equivalent
additive source of noise δn, as shown in Fig. 2.18.

Fig. 2.18 Equivalent noise model for a quantizer.

In the case of large-amplitude wideband signals; that is, signals that vary rapidly
through the entire range R, it may be assumed that the quantization error is a uniformly
distributed white-noise signal. It is further assumed that the quantization noise δn is
uncorrelated with the input signal xn. In such a case, the quantization noise lends itself
to simple statistical treatment. Namely, the quantization operation may be replaced by
an equivalent additive white-noise source, acting where the quantization operation is
occurring. Since δn is assumed to be uniformly distributed in the range −Q/2 ≤ δn ≤
Q/2, it follows that it has zero mean and variance

σ2
δ =

Q2

12
(2.4.1)

2.5 Statistical Treatment of Multiplier Roundoff Error

Here, we would like to use the results of the previous section in the computation of
the roundoff noise arising from the internal multiplications in digital filters. Consider
a typical multiplier in a digital filter

The result of the multiplication requires double precision to be represented fully. If
this result is subsequently rounded to single precision, then the overall operation, and
its noise-equivalent model, will be of the form
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For example, the second order section shown above will be replaced by

with five elementary noise sources acting independently of each other at the locations
shown. In placing these noise sources at those locations, we are implicitly assuming that
a quantization operation is being performed immediately after each multiplication. This
may not always be true, especially in the newer hardware configurations which employ
special purpose chips, such as the TMS320, or the TRW multiplier-accumulators. Such
chips perform the multiplication operation with full double precision. Depending on
the specific digital filter implementation, it is possible for such full-precision products
to accumulate somewhat before the result is finally rounded back to single precision.
The methods presented here can easily be extended to such a situation. For illustrative
purposes, we shall assume that the quantizing operations occur just after each multi-
plication.

To find the output noise power resulting from each noise source we must identify
the transfer function from each noise source to the output of the filter. For example,
the three elementary noises at the forward multipliers may be combined into one acting
at the output adder and having combined variance

σ2
e = 3σ2

δ = 3Q2/12

and the two noises at the two feedback multipliers may be replaced by one acting at the
input adder and having variance

σ2
e′ = 2σ2

δ = 2Q2/12

The transfer function from e′n to the output is H(z) itself, and from en to the output,
it is unity. Adding the output noise variances due to e′n and en, we find the total output
roundoff noise power

σ2
ε = σ2

e′‖H‖2 +σ2
e

Example 2.5.1: Suppose H(z)= H1(z)H2(z), where

H1(z)= 1

1− az−1
and H2(z)= 1

1− bz−1
, with a > b

Determine the output roundoff noise powers when the filter is realized in the following
three forms:

1. H1(z) cascaded by H2(z)
2. H2(z) cascaded by H1(z)
3. H(z) realized in its canonical form
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In case 1, the roundoff noises are as shown. The transfer functions of en and e′n to the
output are H(z) and H2(z), respectively.

Adding the output noise power from each we find

σ2
ε = σ2

δ‖H‖2 +σ2
δ‖H2‖2 = Q

2

12

1+ ab
(1− ab)(1− a2)(1− b2)

+ Q
2

12

1

1− b2

Interchanging the role of H1 and H2, we find for case 2,

σ2
ε = σ2

δ‖H‖2 +σ2
δ‖H1‖2 = Q

2

12

1+ ab
(1− ab)(1− a2)(1− b2)

+ Q
2

12

1

1− a2

And finally in case 3, the canonical realization has two elementary noise sources as shown.

They may be combined into one acting at the input adder. Its variance will beσ2
e = 2Q2/12.

The transfer function to the output is H(z) itself; thus,

σ2
ε = σ2

e‖H‖2 = 2
Q2

12

1+ ab
(1− ab)(1− a2)(1− b2)

It can be seen from the above example that the output roundoff power depends on the
particular realization of the digital filter. A great deal of research has gone into developing
realization structures that minimize the roundoff noise [13–21]. ��

2.6 Introduction to Linear Prediction

In this section, we present a preliminary introduction to the concepts and methods of
linear prediction based on the finite past. We have already mentioned how prediction
ideas come into play by reinterpreting

ŷn = ayn−1 = prediction of yn based on one past sample

en = yn − ŷn = yn − ayn−1 = prediction error

and have indicated how to determine the prediction coefficient a by a least-squares
minimization criterion. Here, we would like to replace that criterion, based on time
averages, with a least-squares criterion based on statistical averages:

E(a)= E[e2
n]= E

[
(yn − ayn−1)2] = min

We will no longer assume that yn is a first-order autoregressive Markov process;
thus, the prediction error en will not quite be white noise. The problem we are posing
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is to find the best linear predictor based on the previous sample alone, regardless of
whether yn is a first-order autoregressive process or not. That is, we seek the projection
of yn on the subspace Yn−1 = {yn−1} spanned only by the previous sample yn−1; this
projection is the best linear estimate of yn based on yn−1 only. If, accidentally, the signal
yn happened to be first-order autoregressive, then en would turn out to be white and
our methods would determine the proper value for the Markov model parameter a.

The best value for the prediction coefficient a is obtained by differentiating E with
respect to a, and setting the derivative to zero.

∂E
∂a
= 2E

[
en
∂en
∂a

]
= −2E[enyn−1]= 0

Thus, we obtain the orthogonality equation

E[enyn−1]= 0

which states that the prediction error en is decorrelated from yn−1. An equivalent way
of writing this condition is the normal equation

E[enyn−1]= E
[
(yn − ayn−1)yn−1

] = E[ynyn−1]−aE[y2
n−1]= 0

or, in terms of the autocorrelations Ryy(k)= E[yn+kyn],

Ryy(1)= aRyy(0) or a = Ryy(1)
Ryy(0)

The minimum value of the prediction error E(a) for the above optimal value of a may
be written as

minE = E[e2
n]= E

[
en(yn − ayn−1)

] = E[enyn]−aE[enyn−1]= E[enyn]
= E[

(yn − ayn−1)yn
] = E[y2

n]−aE[yn−1yn]= Ryy(0)−aRyy(1)
= Ryy(0)−Ryy(1)2/Ryy(0)= (1− a2)Ryy(0)

The resulting prediction-error filter has transfer function

en = yn − ayn−1 , A(z)= 1− az−1

A realization of the prediction filter is drawn in Fig. 2.19. The upper output is the
prediction error, whose average power has been minimized, and the lower output is the
predicted waveform. The original signal may be written as a sum of two terms:

yn = ŷn + en
The first term ŷn = ayn−1 is highly correlated with the secondary signal yn−1, which
in turn is input to the multiplier. The second term en, by virtue of the orthogonality
relations, is completely uncorrelated with yn−1. In Fig. 2.19 we have indicated a dividing
line between the input part and the correlation canceler part. The latter may be recog-
nized as a special case of the correlation canceler configuration of Fig. 1.1. The input
part simply provides the two inputs to the correlation canceler. Since these two inputs
are yn and yn−1, the canceler tries to cancel any correlations that may exist between
these two signals; in other words, it tries to remove any serial correlations that might
be present in yn.

Next, we discuss higher order predictors and find their connection to lower order
predictors. First, we change to a more standard notation by replacing the parameter a
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Fig. 2.19 First-order linear predictor.

by a1 = −a. That is, we take

ŷn = −a1yn−1 = prediction of yn based on one past sample

en = yn − ŷn = yn + a1yn−1 = prediction error

E(a1) = E[e2
n]= E

[
(yn + a1yn−1)2] = minimum

(2.6.1)

It will prove instructive to discuss, in parallel, the second-order case of predicting
yn on the basis of two past samples yn−1 and yn−2

ŷ′n = −[a′1yn−1 + a′2yn−2]= prediction of yn based on two past samples

e′n = yn − ŷ′n = yn + a′1yn−1 + a′2yn−2 = prediction error

E ′(a′1, a′2) = E[e′2n ]= E
[
(yn + a′1yn−1 + a′2yn−2)2] = minimum

The second-order predictor ŷ′n of yn is the orthogonal projection of yn onto the
subspace spanned by the past two samples Y′n−1 = {yn−1, yn−2}. A realization of the
second-order predictor is shown in Fig. 2.20.

Fig. 2.20 Second-order linear predictor.

Again, it may be recognized as a special case of the correlation canceler. The input
part provides the necessary inputs to the canceler. The main input to the canceler

is yn and the secondary input is the 2-vector

[
yn−1

yn−2

]
. The canceler tries to remove

any correlations between yn and yn−1 and yn−2. That is, it tries to remove even more
sequential correlations than the first-order predictor did. The corresponding prediction-
error filters are for the two cases

A(z)= 1+ a1z−1 and A′(z)= 1+ a′1z−1 + a′2z−2

Our objective is to determine the best choice of the prediction-error filters (1, a1)
and (1, a′1, a′2) such that the corresponding mean-square prediction errors are mini-
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mized. The minimization conditions in the two cases become

∂E
∂a1

= 2E
[
en
∂en
∂a1

]
= 2E[enyn−1]= 0

∂E ′
∂a′1

= 2E
[
e′n
∂e′n
∂a′1

]
= 2E[e′nyn−1]= 0

∂E ′
∂a′2

= 2E
[
e′n
∂e′n
∂a′2

]
= 2E[e′nyn−2]= 0

Inserting

en =
1∑
m=0

amyn−m (we set a0 = 1)

e′n =
2∑
m=0

a′myn−m (again, a′0 = 1)

into these orthogonality equations, we obtain the two sets of normal equations

R(1)+a1R(0)= 0 (first-order predictor) (2.6.2)

R(1)+a′1R(0)+a′2R(1) = 0

R(2)+a′1R(1)+a′2R(0) = 0
(second-order predictor) (2.6.3)

which determine the best prediction coefficients. We have also simplified our previous
notation and set R(k)= E[yn+kyn]. The corresponding minimal values for the mean-
squared errors are expressed as

E = E[e2
n]= E[enyn]= R(0)+a1R(1) (2.6.4)

E ′ = E[e′2n ]= E[e′nyn]= R(0)+a′1R(1)+a′2R(2) (2.6.5)

We have already shown the first of these. The second is derived by a similar procedure

E ′ = E[e′2n ]= E
[
e′n(yn + a′1yn−1 + a′2yn−2)

] = E[e′nyn]+a′1E[e′nyn−1]+a′2E[e′nyn−2]

= E[e′nyn]= E
[
(yn + a′1yn−1 + a′2yn−2)yn

] = R(0)+a′1R(1)+a′2R(2)
The orthogonality equations, together with the equations for the prediction errors,

can be put into a matrix form as follows[
R(0) R(1)
R(1) R(0)

][
1
a1

]
=

[ E
0

]
⎡⎢⎣R(0) R(1) R(2)
R(1) R(0) R(1)
R(2) R(1) R(0)

⎤⎥⎦
⎡⎢⎣ 1
a′1
a′2

⎤⎥⎦ =
⎡⎢⎣ E ′

0
0

⎤⎥⎦
(2.6.6)

Example 2.6.1: Rederive the results (2.6.3) and (2.6.5) for the second-order predictor using the
correlation canceler formulation of Section 1.4. In the notation of Section 1.4, the primary
input to the canceler is the 1-vector x = [yn] and the secondary input is the 2-vector

y =
[
yn−1

yn−2

]
. Then,

Rxy = E
[
yn[yn−1, yn−2]

] = [
E[ynyn−1], E[ynyn−2]

] = [R(1),R(2)]
Ryy = E

[[
yn−1

yn−2

]
[yn−1, yn−2]

]
=

[
R(0) R(1)
R(1) R(0)

]
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Therefore,

H = RxyR−1
yy = [R(1),R(2)]

[
R(0) R(1)
R(1) R(0)

]−1

If we denote this row vector by H = −[a′1, a′2], we find

−[a′1, a′2]= [R(1),R(2)]
[
R(0) R(1)
R(1) R(0)

]−1

which is the solution of Eq. (2.6.3). The corresponding estimate x̂ = Hy is then

ŷ′n = −[a′1, a′2]
[
yn−1

yn−2

]
= −[a′1yn−1 + a′2yn−2]

and the minimum value of the mean-square estimation error is

E ′ = E[e′2n ]= Rxx −HRyy = E[y2
n]+[a′1, a′2]

[
R(1)
R(2)

]
= R(0)+a′1R(1)+a′2R(2)

which agrees with Eq. (2.6.5). ��

Example 2.6.2: Using the results of Section 1.7, determine the forward and backward predictors
of first and second orders. In the notation of Section 1,7, that data vector y and the
subvectors ȳ and ỹ are

y =
⎡⎢⎣ ynyn−1

yn−2

⎤⎥⎦ , ȳ =
[
yn
yn−1

]
, ỹ =

[
yn−1

yn−2

]
,

The corresponding covariance matrix R = E[yyT] and its subblocks are

R =
⎡⎢⎣ R(0) R(1) R(2)
R(1) R(0) R(1)
R(2) R(1) R(0)

⎤⎥⎦ , R̄ = R̃ =
[
R(0) R(1)
R(1) R(0)

]

Similarly,

ra =
[
R(1)
R(2)

]
, rb =

[
R(2)
R(1)

]
, ρa = ρb = R(0)

We note that ra and rb are the reverse of each other. Formally, ra = J̄rb, where J̄ is the

order-2 reversing matrix J̄ =
[

0 1
1 0

]
. The first and second order forward predictors will

be

ā = ã =
[

1
a1

]
, a =

⎡⎢⎣ 1
a′1
a′2

⎤⎥⎦
Noting that R̄ and hence R̄−1 both commute with the reversing matrix J̄, we obtain the
backward prediction vector, given by (1.7.7)

βββ = −R̄−1rb = −R̄−1J̄ra = −J̄R̄−1ra = J̄ααα

It follows that the backward predictors are the reverse of the forward ones:

b̄ = b̃ =
[
a1

1

]
, b =

⎡⎢⎣ a
′
2

a′1
1

⎤⎥⎦
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The corresponding matrices L andU whose rows are the backward and forward predictors,
Eqs. (1.7.14) and (1.7.30), are

L =
⎡⎢⎣ 1 0 0
a1 1 0
a′2 a′1 1

⎤⎥⎦ , U =
⎡⎢⎣ 1 a′1 a′2

0 1 a1

0 0 1

⎤⎥⎦
It follows from the reversing symmetry of R that they are reverses of each other, i.e.,
U = JLJ, where J is the order-3 reversing matrix. Similarly, the diagonal matrices Da and
Db are reverses of each other; namely,

Db = diag
{
R(0),E,E ′} , Da = diag

{E ′,E, R(0)}

2.7 Gapped Functions, Levinson and Schur Recursions

Instead of solving the matrix equations (2.6.6) directly, or independently, of each other,
we would like to develop an iterative procedure for constructing the solution [1, a′1, a′2]
in terms of the solution [1, a1]. The procedure is known as Levinson’s algorithm. To this
end, it proves convenient to work with the elegant concept of the “gapped” functions,
first introduced into this context by Robinson and Treitel [22]. Gapped functions are
also used in the development of the Schur algorithm [23]. The gapped functions for the
first and second order predictors are defined by

g(k) = E[enyn−k] (for first-order predictor)

g′(k) = E[e′nyn−k] (for second-order predictor)

They are the cross-correlations between the prediction-error sequences and the se-
quence yn. These definitions are motivated by the orthogonality equations, which are
the determining equations for the prediction coefficients. That is, if the best coefficients
[1, a1] and [1, a′1, a′2] are used, then the gapped functions must vanish at lags k = 1
for the first-order case, and k = 1,2 for the second-order one; that is,

g(1) = E[enyn−1]= 0

g′(1) = E[e′nyn−1]= 0 , g′(2)= E[e′nyn−2]= 0

Thus, the functions g(k) and g′(k) develop gaps of lengths one and two, respec-
tively, as seen in Fig. 2.21.

Fig. 2.21 Gapped functions of orders one and two.

A special role is played by the value of the gapped functions at k = 0. It follows
from the expressions (2.6.4) for the minimized prediction errors that

E = g(0)= E[enyn] and E ′ = g′(0)= E[e′nyn] (2.7.1)

The gapped functions may also be expressed as the convolution of the prediction-
error filters [1, a1] and [1, a′1, a′2] with the autocorrelation function R(k)= E[yn+kyn],
as can be seen from the definition



92 2. Some Signal Processing Applications

g(k) = E[enyn−k]= E
⎡⎣⎛⎝ 1∑

m=0

amyn−m

⎞⎠yn−k
⎤⎦

=
1∑
m=0

amE[yn−myn−k]=
1∑
m=0

amR(k−m)
(2.7.2)

and similarly

g′(k)= E[e′nyn−k]=
2∑
m=0

a′mR(k−m) (2.7.3)

Thus, they are the outputs of the prediction-error filters, when the input is the autocor-
relation function R(k).

The Levinson recursion, which iteratively constructs the best linear predictor of order
two from the best predictor of order one, can be derived with the help of the gapped
functions. The basic idea is to use the gapped function of order one, which already has
a gap of length one, and construct from it a new gapped function with gap of length
two.

Starting with g(k), first reflect it about the origin, then delay it sufficiently until the
gap of the reflected function is aligned with the gap of g(k). In the present case, the
required delay is only two units, as can be seen from Fig. 2.22.

Fig. 2.22 Reflected and delayed gapped functions.

Any linear combination of the two gapped functions g(k) and g(2 − k) will have
gap of at least length one. Now, select the coefficients in the linear combination so that
the gap becomes of length two

g′(k)= g(k)−γ2g(2− k) (2.7.4)

with the extra gap condition g′(2)= 0

g′(2)= g(2)−γ2g(0)= 0

which determines the coefficient γ2 as

γ2 = g(2)g(0)
= R(2)+a1R(1)
R(0)+a1R(1)

(2.7.5)
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The coefficient γ2 is called the reflection coefficient or PARCOR coefficient and if
selected as above, it will ensure that the new gapped function g′(k) has a gap of length
two. To find the new prediction-error filter, we write Eq. (2.7.4) in the z-domain, noting
that the z-transform of g(−k) is G(z−1), and that of g(2− k) is z−2G(z−1)

G′(z)= G(z)−γ2z−2G(z−1)

Using the convolutional equations (2.7.2) and (2.7.3), expressed in the z-domain, we find

A′(z)Syy(z)= A(z)Syy(z)−γ2z−2A(z−1)Syy(z−1)

Since Syy(z−1)= Syy(z), it can be canceled from both sides, giving the desired rela-
tionship between the new and the old prediction-error filters

A′(z)= A(z)−γ2z−2A(z−1) (Levinson recursion) (2.7.6)

and equating coefficients⎡⎢⎣ 1
a′1
a′2

⎤⎥⎦ =
⎡⎢⎣ 1
a1

0

⎤⎥⎦− γ2

⎡⎢⎣ 0
a1

1

⎤⎥⎦ ⇒ a′1 = a1 − γ2a1

a′2 = −γ2

Introducing the reverse polynomials

AR(z) = z−1A(z−1)= a1 + z−1

A′R(z) = z−2A(z−1)= a′2 + a′1z−1 + z−2

and taking the reverse of Eq. (2.7.6), we obtain a more convenient recursion that involves
both the forward and the reverse polynomials:

A′(z) = A(z)−γ2z−1AR(z)

A′R(z) = z−1AR(z)−γ2A(z)
(2.7.7)

It is of interest also to express the new prediction error in terms of the old one. Using
E ′ = g′(0) and the above recursions, we find

E ′ = g′(0)= g(0)−γ2g(2)= g(0)−γ2
2g(0)= (1− γ2

2)E

or,
E ′ = (1− γ2

2)E (2.7.8)

Since both E ′ and E are positive quantities, it follows that γ2 must have magnitude
less than one. Using Eq. (2.6.4), we also obtain

E = E[e2
n]= g(0)= R(0)+a1R(1)= (1− γ2

1)R(0)= (1− γ2
1)σ2

y (2.7.9)

where, by convention, the reflection coefficient γ1 for the first-order predictor was de-
fined as γ1 = −a1. Equation (2.7.9) implies that γ1 also has magnitude less than one.
Combining Eqs. (2.7.8) and (2.7.9), we find

E ′ = (1− γ2
2)E = (1− γ2

2)(1− γ2
1)σ2

y (2.7.10)

The Levinson recursion (2.7.7) leads directly to the so-called lattice filters of linear
prediction. Instead of realizing just the filter A′(z), the lattice realizations simultane-
ously realize bothA′(z) and its reverseA′R(z). The input to both filters is the sequence
yn being predicted. SinceA′(z) is related toA(z), first a lattice realization ofA(z) will
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Fig. 2.23 Lattice realizations of first-order prediction-error filter.

be constructed. Writing A(z)= 1 + a1z−1 = 1 − γ1z−1 and AR(z)= −γ1 + z−1, a si-
multaneous realization of both, with a common input yn, is shown in Fig. 2.23, where a
common multiplier γ1 is indicated for both branches.

The transfer functions from yn to en and rn, are A(z) and AR(z), respectively.
Using Eq. (2.7.7), it should be evident that a simultaneous realization of both A′(z)
and A′R(z) can be obtained by simply adding one more lattice section involving the
coefficient γ2, as shown in Fig. 2.24.

Again, the transfer functions from the common input yn to e′n and r′n are A′(z) and
A′R(z), respectively. The I/O equations for the lattice filter, Fig. 2.24, with overall input
yn, are

en = yn − γ1yn−1 ,

e′n = en − γ2rn−1 ,

rn = yn−1 − γ1yn ,

r′n = rn−1 − γ2en ,
(2.7.11)

Fig. 2.24 Lattice realization of second-order prediction-error filter.

We observe that the Levinson recursion (2.7.6) is identical to the order-updating
equation (1.7.40). Because b is the reverse of a, the second of Eqs. (1.7.40) is simply
the upside-down version of the first. The lattice recursions (1.7.50) are identical to Eq.
(2.7.11). Indeed,

ea = aTy = [1, a′1, a′2]
⎡⎢⎣ ynyn−1

yn−2

⎤⎥⎦ = e′n , eb = bTy = [a′2, a′1,1]
⎡⎢⎣ ynyn−1

yn−2

⎤⎥⎦ = r′n
and using the definitions (1.7.49), we find

ēa = āTȳ = [1, a1]
[
yn
yn−1

]
= en , ẽb = b̃

T
ỹ = [a1,1]

[
yn−1

yn−2

]
= rn−1

Next, we develop the Schur algorithm for first and second order predictors. Moti-
vated by the appearance of the reversed polynomials in the Levinson recursion (2.7.7),
we are led to define the backward gapped functions of orders one and two by their
z-transforms

G−(z)≡ z−1G(z−1)= AR(z)Syy(z) , G′−(z)= z−2G′(z−1)= A′R(z)Syy(z) (2.7.12)

In the time domain,
g−(k)= g(1− k) , g′−(k)= g′(2− k) (2.7.13)

Thus, they are reflected and appropriately delayed versions of the forward gapped
functions (the delay being one less than required to align the gaps). They satisfy the
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following gap conditions: Because g(k) and g′(k) vanish at k = 1 and k = 1,2, it
follows from Eq. (2.7.13) that g−(k) and g′−(k) will vanish at k = 0 and k = 0,1, respec-
tively. The lattice recursions satisfied by the forward and backward gapped functions
are obtained as follows. For the first-order case, we write

G(z)= A(z)Syy(z)= (1−γ1z−1)Syy(z) , G−(z)= AR(z)Syy(z)= (−γ1+z−1)Syy(z)

Multiplying Eq. (2.7.7) by Syy(z) and using the definition (2.7.12), we have for the second-
order case,

G′(z)= G(z)−γ2z−1G−(z) , G′−(z)= z−1G−(z)−γ2G(z)

Writing the above equations in the time domain we obtain the Schur algorithm:

1. Compute γ1 = R(1)R(0)

2. Compute the first-order gapped functions:

g(k)= R(k)−γ1R(k− 1) , g−(k)= R(k− 1)−γ1R(k) (2.7.14)

3. Compute the first-order prediction error E = g−(1)= g(0)

4. Compute γ2 = g(2)
g−(1)

= g(2)
g(0)

5. Compute the second-order gapped functions:

g′(k)= g(k)−γ2g−(k− 1) , g′−(k)= g−(k− 1)−γ2g(k) (2.7.15)

6. Compute the second-order prediction error E ′ = g′−(2)= g′(0)

The Schur algorithm is an alternative to Levinson’s algorithm for computing the
reflection coefficients γ1 and γ2. The difference between the two is that although Levin-
son’s algorithm works with the polynomial recursions (2.7.6), Schur’s algorithm works
with the gapped functions themselves. Note that Eqs. (2.7.14) and (2.7.15) generate the
output signals from the first and second segments of the lattice filter, Fig. 2.24, when
the overall input is the sequence R(k). Also, note that γ1 is computed as the ratio of
the two inputs (past the first delay) to the first lattice section at time k = 1, and γ2

as the ratio of the two inputs (past the second delay) to the second lattice section at
time k = 2. This lattice filter representation of the Schur algorithm generalizes easily
to higher order predictors by simply adding more lattice sections [23]. In the present
case, we only go up to order two, and thus, it is necessary to know only the first three
autocorrelation lags

{
R(0),R(1),R(2)

}
. The pair of gapped functions (2.7.14) needs to

be evaluated only at k = 1,2, and the pair (2.7.15) only at k = 2.

Example 2.7.1: Given
{
R(0),R(1),R(2)

} = {8,4,−1}, compute the reflection coefficients and
prediction errors up to order two, and determine the resulting LU factorization of R.

Solution: We will use the Schur algorithm. First, we compute γ1 = 4/8 = 0.5. Then, evaluate
(2.7.14) at k = 1 and k = 2:

g(1) = R(1)−γ1R(0)= 4− 0.5× 8 = 0 (the first gap)

g−(1) = R(0)−γ1R(1)= 8− 0.5× 4 = 6 = E
g(2) = R(2)−γ1R(1)= −1− 0.5× 4 = −3

g−(2) = R(1)−γ1R(2)= 4− 0.5× (−1)= 4.5
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Then, compute γ2 = g(2)/g−(1)= −3/6 = −0.5, and evaluate (2.7.15) at k = 2:

g′(2) = g(2)−γ2g−(1)= (−3)−(−0.5)×6 = 0 (the second gap)

g′−(2) = g−(1)−γ2g(2)= 6− (−0.5)×(−3)= 4.5 = E ′

It is evident from the above computations that, because of the gap conditions, we did not
need to compute g(k) at k = 1 and g′(k) at k = 2. We did so, however, to maintain
the symmetry of the forward/backward pair of gapped function equations. The predictor
polynomials are obtained from the γs by Eq. (2.7.6)[

1
a1

]
=

[
1
−γ1

]
=

[
1
−0.5

]
,

⎡⎢⎣ 1
a′1
a′2

⎤⎥⎦ =
⎡⎢⎣ 1
−0.5

0

⎤⎥⎦− (−0.5)

⎡⎢⎣ 0
−0.5

1

⎤⎥⎦ =
⎡⎢⎣ 1
−0.75

0.5

⎤⎥⎦
Next, we construct the LU factorization of R according to Eqs. (1.7.18) and (1.7.58). The
matrix L was constructed in Example 2.6.2:

L =
⎡⎢⎣ 1 0 0
a1 1 0
a′2 a′1 1

⎤⎥⎦ =
⎡⎢⎣ 1 0 0
−0.5 1 0
0.5 −0.75 1

⎤⎥⎦
It is easily verified that LRLT = Db = diag{8,6,4.5}. The matrix G, has as columns the
backward gapped functions of successive orders. The first column is the order-0 backward
gapped function, namely, the given autocorrelation function R(k). Thus,

Gb =
⎡⎢⎣ R(0) g−(0) g′−(0)
R(1) g−(1) g′−(1)
R(2) g−(2) g′−(2)

⎤⎥⎦ =
⎡⎢⎣ 8 0 0

4 6 0
−1 4.5 4.5

⎤⎥⎦
It is lower triangular because of the gap conditions for the backward gapped functions,
namely, g−(0)= 0 and g′−(0)= g′−(1)= 0. Equations LGb = Db and R = GbD−1

b G
T
b are

easily verified. ��
Example 2.7.2: For the above example, compute the inverse of the matrices R and R̄ using the

order recursive constructions (1.7.28) and (1.7.35).

Solution: First we apply Eq. 1.7.28) to R̄. Noting that the backward predictor b is the reverse of
the forward one, a, we find

R̄−1 =
[
R(0) R(1)
R(1) R(0)

]−1

=
[
R(0)−1 0

0 0

]
+ 1

E
[
a1

1

]
[a1,1]

=
[

1/8 0
0 0

]
+ 1

6

[
−0.5

1

]
[−0.5,1]= 1

6

[
1 −0.5
−0.5 1

]

Then, apply Eq. (1.7.28) to R, using b = [0.5,−0.75,1]T

R−1 =
[
R̄−1 0

0 0

]
+ 1

E ′ bbT

=
⎡⎢⎣ 1/6 −0.5/6 0
−0.5/6 1/6 0

0 0 0

⎤⎥⎦+ 1

4.5

⎡⎢⎣ 0.5
−0.75

1

⎤⎥⎦ [0.5,−0.75,1]

= 1

9

⎡⎢⎣ 2 −1.5 1
−1.5 2.625 −1.5

1 −1.5 2

⎤⎥⎦
Note that the inverse of the Toeplitz matrix R is not Toeplitz. It still satisfies, however,
the symmetry property of commuting with the reversing matrix J, JR−1J = R−1, which
implies that R−1 remains invariant under reversal of its rows and then its columns. The
application of Eq. (1.7.35) can be done directly, or, it can be derived from the above result
by noting that Eq. (1.7.28) gets mapped into Eq. (1.7.35) under the reversal operation, that
is, by multiplying both sides of Eq. (1.7.28) by the reversing matrix J. ��
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Lattice realizations are alternatives to the direct form realizations given in Figs. 2.19
and 2.20. One of the nicest properties of lattice realizations is that higher-order predic-
tors can be easily obtained by simply adding more lattice sections. Another important
property is that lattice filters are better behaved (less sensitive) under quantization of
the multiplier coefficients than the direct-form realizations.

The linear prediction problem solved here was to find the best predictor based on
just one or two past samples. It must be contrasted with the full linear prediction
problem mentioned in Sections 1.11 and 1.16, which was based on the entire past of yn.
It is, of course, the latter that whitens the error en and provides the signal model of yn.
However, in practice, the full prediction problem is difficult to solve because it requires
the determination of an infinite number of prediction coefficients {a1, a2, . . . }. Thus,
the problem of linear prediction based on the finite past is of more practical interest. A
more complete discussion of linear prediction, Levinson’s and Schur’s algorithms, and
lattice filters, will be presented in Chapter 5.

2.8 Introduction to Data Compression and DPCM

In this section, we discuss the application of linear prediction ideas to the problem
of data compression by differential PCM (DPCM) methods. For illustrative purposes, we
work with a second-order predictor. The predictor is to be used to compress the dynamic
range of a signal yn so that it may be transmitted more efficiently. Suppose we have
already found the best predictor coefficients (1, a1, a2) that minimize the prediction
error by solving Eq. (2.6.3) (for simplicity, the primes have been dropped):

E = E[e2
n]= min

e = yn − ŷn = yn + a1yn−1 + a2yn−2

The basic idea in data compression is that if the predictor is good, then the prediction
error en will be small, or rather it will have a compressed dynamic range compared to
the original signal. If we were to code and transmit en rather than yn, we would need
fewer bits to represent each sample en than we would need for yn. At the receiving end,
the original waveform yn can be reconstructed by processing en through the inverse of
the prediction-error filter. The overall system is represented as follows

For meaningful reconstruction, it is necessary that the inverse filter 1/A(z) be stable
(and causal). This requires that the zeros of the prediction-error filterA(z) lie inside the
unit circle in the z-plane. Two proofs of this fact will be presented later on, in Sections
3.7 and 5.8. The gain in the dynamic ratio that we expect to achieve with this method
of data compression is given by the ratio

G = σ
2
y

σ2
e
= σ

2
y

E = 1

(1− γ2
1)(1− γ2

2)

where we used Eq. (2.7.10). This is always greater than one, since both γ1 and γ2 have
magnitude less than one. Even without this result, we could have concluded that the
above ratio is greater than one. Indeed, the quantityσ2

y = R(0) is the prediction error for
the trivial choice of the prediction-error coefficients a = [1, a1, a2]= [1,0,0], whereas
E = σ2

e corresponds to the choice that minimizes the prediction error; thus, σ2
y > σ2

e .
Next, we discuss the question of quantizing the prediction-error sequence en for the

purpose of transmission or storage. First, we note that any prediction-error filter A(z)
may be realized as
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whereP(z)= 1−A(z) is the corresponding predictor filter; for example, P(z)= −[a1z−1+
a2z−2] for the second-order case. The conventional differential PCM encoder is a predic-
tor realized in this manner with a quantizer inserted as shown in Fig. 2.25. The presence
of the quantizer introduces a quantization error δn such that

ẽn = en + δn (2.8.1)

Fig. 2.25 DPCM encoder.

where δn may be assumed to be zero-mean uniform white noise of varianceσ2
δ = Q2/12,

where Q is the step size of the quantizer. This particular realization ensures that, at
the reconstructing end, the quantization errors do not accumulate. This follows from
the property that

ỹn − yn = (ẽn + ŷn)−yn = ẽn − en = δn (2.8.2)

which states that ỹn differs from yn only by the quantization error δn suffered by the
current input en to the quantizer. The complete DPCM system is shown in Fig. 2.26.

Fig. 2.26 DPCM system for digital data transmission or storage.

It is evident from this figure that ỹn − yn given by Eq. (2.8.2) is the reconstruction
error, resulting only from the (irreversible) quantization error δn. The data compression
gain afforded by such a system is conveniently expressed in terms of the following SNRs:

SNR(DPCM) = σ
2
e

σ2
δ
= signal-to-quantization noise of the DPCM signal en

SNR(PCM) = σ
2
y

σ2
δ
= signal-to-quantization noise of the PCM signal yn

G = σ
2
y

σ2
e
= gain of the predictor system

These three quantities are related by

SNR(DPCM) = SNR(PCM)/G
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or, expressed in dB,

10 log10 SNR(DPCM) = 10 log10 SNR(PCM)− 10 log10G (2.8.3)

Therefore, the quantity 10 log10G is the data compression gain afforded by the DPCM
system over PCM. The best DPCM coder is thus the one maximizing the predictor gain
G or equivalently, minimizing the mean-squared prediction error

E = σ2
e = E[e2

n]= min (2.8.4)

The presence of the quantizer makes this minimization problem somewhat different
from the ordinary prediction problem. However, it can be handled easily using the stan-
dard assumptions regarding the quantization noise δn; namely, that δn is white noise
and that it is uncorrelated with the input sequence yn. First, we note that minimizing E
is equivalent to minimizing

Ẽ = E[ẽ2
n]= E[(en + δn)2]= E[e2

n]+E[δ2
n]= E+σ2

δ , or,

Ẽ = E[ẽ2
n]= min (2.8.5)

Replacing the quantizer by the equivalent noise source (2.8.l), we may redraw the
DPCM coder with δn acting at the input adder:

It is evident from this figure that the minimization problem (2.8.5) is equivalent to
an effective linear prediction problem of predicting the noisy sequence ỹn = yn + δn.
Since yn and δn are mutually uncorrelated, the autocorrelation function of ỹn, R̃(k)=
E[ỹn+kỹn], is expressible as the sum of the individual autocorrelations of yn and δn,

E[ỹn+kỹn]= E
[
(yn+k + δn+k)(yn + δn)

] = E[yn+kyn]+E[δn+kδn] , or,

R̃(k)= R(k)+σ2
δδ(k) (2.8.6)

where we used E[δn+kδn]= σ2
δδ(k). Only the diagonal entries of the autocorrelation

matrix R̃ are different from those of R, and are shifted by an amount

R̃(0)= R(0)+σ2
δ = R(0)[1+ ε] (2.8.7)

where ε = σ2
δ/σ

2
y = 1/SNR(PCM). The optimal prediction coefficients are obtained by

solving the corresponding normal equations (2.6.3) or (2.6.6), but with R(0) replaced
by R̃(0). Typically, SNR(PCM) is fairly large, and therefore ε is only a small correction
which may be ignored without degrading much the performance of the system.

We also point out that a similar change in the autocorrelation matrix, given by (2.8.7),
occurs in a different context in the least-squares design of waveshaping filters from
noisy data. In that context, ε is referred to as the Backus-Gilbert parameter. This will
be discussed in Chapter 5.

DPCM encoding methods have been applied successfully to speech and image data
compression [24–26]. In speech, a compression gain of 4 to 12 dB over PCM can be
obtained. The gain can be increased even further using adaptive quantizers and/or
adaptive predictors. For images, using 3d order predictors, the gain is typically 20 dB
over PCM.
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Finally, we remark that DPCM transmission systems are susceptible to channel er-
rors. Unlike quantization errors which do not accumulate at the reconstructing end,
channel errors do accumulate and get amplified.

This may be seen as follows: Let the received sequence ẽn be corrupted by white
gaussian channel noise vn, as shown in Fig. 2.27.

Fig. 2.27 Channel noise in a DPCM receiver.

Then, both ẽn and the channel noise vn get filtered through the reconstructing in-
verse filter B(z)= 1/A(z). This filter is designed to decompress ẽn back to yn and
thus, it has a gain which is greater than one. This will also cause the channel noise vn to
be amplified as it goes through B(z). The output to input noise power is given by the
quadratic norm ‖B‖2:

σ2
v̂

σ2
v
= ‖B‖2 =

∥∥∥∥ 1

A

∥∥∥∥2

=
∮

u.c.

1

A(z)A(z−1)
dz

2πjz

which is always greater than one. For example, for the second-order predictor it can be
shown that

‖B‖2 =
∥∥∥∥ 1

A

∥∥∥∥2

= 1

(1− γ2
1)(1− γ2)

where γ1 and γ2 are the reflection coefficients of the prediction problem (2.8.5).
To combat against channel errors, some channel encoding with error-protection

must be done prior to transmission [27,28].

2.9 Problems

2.1 Let x(n) be a zero-mean white-noise sequence of unit variance. For each of the following
filters compute the output autocorrelation Ryy(k) for all k, using z-transforms:

1. y(n)= x(n)−x(n− 1)
2. y(n)= x(n)−2x(n− 1)+x(n− 2)
3. y(n)= −0.5y(n− 1)+x(n)
4. y(n)= 0.25y(n− 2)+x(n)

Also, sketch the output power spectrum Syy(ω) versus frequencyω.

2.2 Let yn be the output of a (stable and causal) filter H(z) driven by the signal xn, and let wn
be another unrelated signal. Assume all signals are stationary random signals. Show the
following relationships between power spectral densities:

(a) Syw(z)= H(z)Sxw(z)
(b) Swy(z)= Swx(z)H(z−1)

2.3 A stationary random signal yn is sent through a finite filterA(z)= a0+a1z−1+· · ·+aMz−M
to obtain the output signal en :

en =
M∑
m=0

amyn−m
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Show that the average power of the output en can be expressed in the two alternative forms:

E[e2
n]=

∫ π
−π
Syy(ω)

∣∣A(ω)∣∣2 dω
2π

= aTRyya

where a = [a0, a1, . . . , aM]T and Ryy is the (M + 1)×(M + 1) autocorrelation matrix of yn
having matrix elements Ryy(i, j)= E[yiyj]= Ryy(i− j).

2.4 Consider the two autoregressive random signals yn and y′n generated by the two signal
models:

A(z)= 1+ a1z−1 + · · · + aMz−M and A′(z)= 1+ a′1z−1 + · · · + a′Mz−M

(a) Suppose yn is filtered through the analysis filter A′(z) of y′n producing the output
signal en; that is,

en =
M∑
m=0

a′myn−m

If yn were to be filtered through its own analysis filter A(z), it would produce the
innovations sequence εn. Show that the average power of en compared to the average
power of εn is given by

σ2
e

σ2
ε
= a′TRyya′

aTRyya
=

∫ π
−π

∣∣∣∣A′(ω)A(ω)

∣∣∣∣2 dω
2π

=
∥∥∥∥A′A

∥∥∥∥2

where a, a′ and Ryy have the same meaning as in Problem 2.3. This ratio can be taken
as a measure of similarity between the two signal models. The log of this ratio is
Itakura’s LPC distance measure used in speech recognition.

(b) Alternatively, show that if y′n were to be filtered through yn’s analysis filter A(z)
resulting in e′n =

∑M
m=0 amy′n−m, then

σ2
e′

σ2
ε′
= aTR′yya

a′TR′yya′
=

∫ π
−π

∣∣∣∣ A(ω)A′(ω)

∣∣∣∣2 dω
2π

=
∥∥∥∥ AA′

∥∥∥∥2

2.5 The autocorrelation function of a complex-valued signal is defined by

Ryy(k)= E[yn+ky∗n ]
(a) Show that stationarity implies Ryy(−k)= Ryy(k)∗.

(b) If yn is filtered through a (possibly complex-valued) filter A(z)= a0 + a1z−1 + · · · +
aMz−M , show that the average power of the output signal en can be expressed as

E[e∗nen]= a†Ryya

where a† denotes the hermitian conjugate of a and Ryy has matrix elements

Ryy(i, j)= Ryy(i− j)

2.6 (a) Let yn = A1 exp
[
j(ω1n + φ1)

]
be a complex sinusoid of amplitude A1 and frequency

ω1. The randomness of yn arises only from the phase φ1 which is assumed to be a random
variable uniformly distributed over the interval 0 ≤ φ1 ≤ 2π. Show that the autocorrelation
function of yn is

Ryy(k)= |A1|2 exp(jω1k)

(b) Let yn be the sum of two sinusoids

yn = A1 exp
[
j(ω1n+φ1)

]+A2 exp
[
j(ω2n+φ2)

]
with uniformly distributed random phases φ1 and φ2 which are also assumed to be inde-
pendent of each other. Show that the autocorrelation function of yn is

Ryy(k)= |A1|2 exp(jω1k)+|A2|2 exp(jω2k)
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2.7 Sinusoids in Noise. Suppose yn is the sum of L complex sinusoids with random phases, in
the presence of uncorrelated noise:

yn = vn +
L∑
i=1

Ai exp
[
j(ωin+φi)

]
where φi, i = 1,2, . . . , L are uniformly distributed random phases which are assumed to be
mutually independent, and vn is zero-mean white noise of variance σ2

v . Also, assume that
vn is independent of φi.

(a) Show that E[ejφie−jφk]= δik, for i, k = 1,2, . . . , L.

(b) Show that the autocorrelation of yn is

Ryy(k)= σ2
vδ(k)+

L∑
i=1

|Ai|2 exp(jωik)

(c) Suppose yn is filtered through a filter A(z)= a0 + a1z−1 + · · · + aMz−M of order M,
producing the output signal en. Show that the average output power is expressible as

E = E[e∗nen]= a†Ryya = σ2
v a†a+

L∑
i=1

|Ai|2
∣∣A(ωi)∣∣2

where a, a†, Ryy have the same meaning as in Problem 2.5, andA(ωi) is the frequency
response of the filter evaluated at the sinusoid frequencyωi, that is,

A(ωi)=
M∑
m=0

ame−jωim , i = 1,2, . . . ,M

(d) If the noise vn is correlated with autocorrelation Q(k), so that E[vn+kv∗n ]= Q(k),
show that in this case

E = E[e∗nen]= a†Ryya = a†Qa+
L∑
i=1

|Ai|2
∣∣A(ωi)∣∣2

where Q is the noise covariance matrix, Q(i, j)= Q(i− j).

2.8 Computer Experiment. Consider the linear system defined by Eq. (2.2.1). Generate 1500
samples of a unit-variance, zero-mean, white-noise sequence xn, n = 0,1, . . . ,1499 and
filter them through the filter H to obtain the output sequence yn. Compute the sample
cross-correlation R̂yx(k) for k = 0,1, . . . ,50 to obtain estimates of the impulse response
hk. On the same graph, plot the estimated impulse response versus time, together with the
simulated response (2.2.1). Repeat, using a different realization of xn.

2.9 A filter is defined by y(n)= −0.64y(n− 2)+0.36x(n).

(a) Suppose the input is zero-mean, unit-variance, white noise. Compute the output spec-
tral density Syy(z) and power spectrum Syy(ω) and plot it roughly versus frequency.

(b) Compute the output autocorrelation Ryy(k) for all lags k.

(c) Compute the noise reduction ratio of this filter.

(d) What signal s(n) can pass through this filter and remain entirely unaffected (at least
in the steady-state regime)?

(e) How can the filter coefficients be changed so that (i) the noise reduction capability
of the filter is improved, while at the same time (ii) the above signal s(n) still goes
through unchanged? Explain any tradeoffs.
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2.10 Computer Experiment. (a) Generate 1000 samples of a zero-mean, unit-variance, white gaus-
sian noise sequence x(n), n = 0,1, . . . ,999, and filter them through the filter defined by the
difference equation:

y(n)= ay(n− 1)+(1− a)x(n)
with a = 0.95. To avoid the transient effects introduced by the filter, discard the first 900
output samples and save the last 100 samples of y(n). Compute the sample autocorrelation
of y(n) from this length-100 block of samples.

(b) Determine the theoretical autocorrelation Ryy(k), and on the same graph, plot the
theoretical and sample autocorrelations versus k. Do they agree?

2.11 Following the procedure of Example (2.6.l), rederive the results of Eqs. (2.6.2) and (2.6.4) for
the first-order predictor using the correlation canceling formulation of Sect. 1.4.

2.12 Let y(n)= (1,1,1,1) forn = 0,1,2,3. We want to “predict” the fifth sample in this sequence,
that is, the value of y(4).

(a) Compute the sample autocorrelation of this sequence.

(b) Using the Yule-Walker method, determine the best first order predictor of the form

ŷ(n)= −a1y(n− 1)

What is the predicted value of the fifth sample? What is the mean-square prediction
error?

(c) Since we only have sample autocorrelations to work with, let us define the gapped
function g(k) as the convolution of the prediction-error filter (1, a1) with the sample
autocorrelation R̂yy(k), in accordance with Eq. (2.7.2). Verify that g(k) has a gap of
length one.

(d) It is desired next, to determine the best second-order predictor. Using the gapped
function g(k), construct a new gapped function g′(k) having a gap of length two.
Determine the prediction-error filter (1, a′1, a′2).

(e) Compute the predicted value of the fifth sample in this case, and the mean-square
prediction error. Is the predicted fifth value what you expected? Is the value predicted
by the second-order predictor “better” than that predicted by the first-order predictor?

(f) Determine the zeros of the prediction filter (1, a′1, a′2) and verify that they lie inside
the unit circle in the z-plane.

2.13 Repeat parts (a) and (b) of Problem 2.12 for the sequence yn = (−1,1,−1,1). Repeat for
yn = (1,2,3,4).

2.14 Show that the inverse lattice filter of Fig. 2.23 is realized as

Show that the transfer function from en to yn is the synthesis filter 1/A(z). (Note the
different sign conventions at the upper adder.)

2.15 The second-order synthesis lattice filter is realized as follows:

Show that the transfer function from e′n to yn is the synthesis filter 1/A′(z).
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2.16 Consider the second-order prediction-error filter A′(z) given in Eq. (2.7.6). Show that the
quadratic norm of the synthesis filter 1/A′(z) is given by∥∥∥∥ 1

A′

∥∥∥∥2

=
∮

u.c.

1

A′(z)A′(z−1)
dz

2πjz
= 1

(1− γ2
1)(1− γ2

2)

where γ1 and γ2 are the corresponding reflection coefficients. (Hint: factor A′(z) into its
zeros, which are both inside the unit circle, perform the indicated contour integration, and
rewrite the result in terms of γ1 and γ2.) This result was used in Section 2.8 in the discussion
of the channel errors in DPCM systems.
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3
Spectral Factorization

In this chapter, we discuss the concept of minimum-phase signals and filters, state the
spectral factorization theorem, and demonstrate its importance in making signal mod-
els, and present a proof of the minimum-phase property of the prediction-error filter of
linear prediction.

3.1 Minimum-Phase Signals and Filters

A minimum-phase sequence a = [a0, a1, . . . , aM] has a z-transform with all its zeros
inside the unit circle in the complex z-plane

A(z)= a0+a1z−1+· · ·+aMz−M = a0(1−z1z−1)(1−z2z−1)· · · (1−zMz−1) (3.1.1)

with |zi| < 1, i = 1,2, . . . ,M. Such a polynomial is also called a minimum-delay polyno-
mial. Define the following related polynomials:

A∗(z) = a∗0 + a∗1 z−1 + · · · + a∗Mz−M = complex-conjugated coefficients

Ā(z) = a∗0 + a∗1 z+ · · · + a∗MzM = conjugated and reflected

AR(z) = a∗M + a∗M−1z
−1 + · · · + a∗0 z−M = reversed and conjugated

We note the relationships:

Ā(z)= A∗(z−1) and AR(z)= z−MĀ(z)= z−MA∗(z−1) (3.1.2)

We also note that when we set z = ejω to obtain the corresponding frequency re-
sponses, Ā(ω) becomes the complex conjugate of A(ω)

Ā(ω)= A(ω)∗ (3.1.3)

It is easily verified that all these polynomials have the same magnitude spectrum:

|A(ω)|2 = |Ā(ω)|2 = |A∗(ω)|2 = |AR(ω)|2 (3.1.4)

For example, in the case of a doublet a = (a0, a1) and its reverse aR = (a∗1 , a∗0 ), we
verify explicitly

|A(ω)|2 = A(ω)A(ω)∗ = (a0 + a1e−jω)(a∗0 + a∗1 ejω)
= (a∗1 + a∗0 e−jω)(a1 + a0ejω)

= AR(ω)AR(ω)∗= |AR(ω)|2
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Thus, on the basis the magnitude spectrum, one cannot distinguish the doublet
a = (a0, a1) from its reverse aR = (a∗1 , a∗0 ). In the more general case of a polynomial
of degree M, factored into doublets as in Eq. (3.1.1), we note that each doublet can be
replaced by its reverse

(1,−zi)→ (−z∗i ,1) or (1− ziz−1)→ (−z∗i + z−1)

without affecting the overall magnitude spectrum |A(ω)|2. Since there are M such
factors, there will be a total of 2M different Mth degree polynomials, or equivalently,
2M different length-(M+1) sequences, all having the same magnitude spectrum. Every
time a factor (1 − ziz−1) is reversed to become (−z∗i + z−1), the corresponding zero
changes from z = zi to z = 1/z∗i . If zi is inside the unit circle, the 1/z∗i is outside, as
shown

To enumerate all these sequences, start by taking all zeros zi to be inside the unit
circle and successively keep reversing each factor until all 2M possibilities have been
exhausted. At the last step, all the factors will have been flipped, corresponding to
all the zeros being outside the unit circle. The resulting polynomial and sequence are
referred to as having maximal phase, or maximal delay. As an example consider the two
doublets

a = (2,1) and b = (3,2)
and form the four different sequences, where ∗ denotes convolution:

c0 = a∗ b = (2,1)∗(3,2)= (6,7,2), C0(z)= A(z)B(z)
c1 = aR ∗ b = (1,2)∗(3,2)= (3,8,4), C1(z)= AR(z)B(z)
c2 = a∗ bR = (2,1)∗(2,3)= (4,8,3), C2(z)= A(z)BR(z)
c3 = aR ∗ bR = (1,2)∗(2,3)= (2,7,6), C3(z)= A(z)B(z)

All four sequences have the same magnitude spectrum.

3.2 Partial Energy and Minimal Delay

Since the total energy of a sequence a = (a0, a1, . . . , aM) is given by Parseval’s equality

M∑
m=0

|am|2 =
∫ π
−π
|A(ω)|2 dω

2π

it follows that all of the above 2M sequences, having the same magnitude spectrum, will
also have the same total energy. However, the distribution of the total energy over time
may be different. And this will allow an alternative characterization of the minimum
phase sequences, first given by Robinson. Define the partial energy by

Pa(n)=
n∑
m=0

|am|2 = |a0|2 + |a1|2 + · · · + |an|2 , n = 0,1, . . . ,M
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then, for the above example, the partial energies for the four different sequences are
given in the table

c0 c1 c2 c3

P(0) 36 9 16 4
P(1) 85 73 80 53
P(2) 89 89 89 89

We note that c0 which has both its zeros inside the unit circle (i.e., minimal phase) is
also the sequence that has most of its energy concentrated at the earlier times, that is,
it makes its impact as early as possible, with minimal delay. In contrast, the maximal-
phase sequence c3 has most of its energy concentrated at its tail thus, making most of
its impact at the end, with maximal delay.

3.3 Invariance of the Autocorrelation Function

This section presents yet another characterization of the above class of sequences. It
will be important in proving the minimum-phase property of the linear prediction filters.

The sample autocorrelation of a (possibly complex-valued) sequence a = (a0, a1, . . . , aM)
is defined by

Raa(k) =
M−k∑
n=0

an+ka∗n , for 0 ≤ k ≤M

Raa(k) = Raa(−k)∗ , for −M ≤ k ≤ −1

(3.3.1)

It is easily verified that the corresponding power spectral density is factored as

Saa(z)=
M∑

k=−M
Raa(k)z−k = A(z)Ā(z) (3.3.2)

The magnitude response is obtained by setting z = ejω

Saa(ω)= |A(ω)|2 (3.3.3)

with an inversion formula

Raa(k)=
∫ π
−π
|A(ω)|2ejωk dω

2π
(3.3.4)

It follows from Eq. (3.3.4) that the above 2M different sequences having the same
magnitude spectrum, also have the same sample autocorrelation. They cannot be distin-
guished on the basis of their autocorrelation. Therefore, there are 2M different spectral
factorizations of Saa(z) of the form

Saa(z)= A(z)Ā(z) (3.3.5)

but there is only one with minimum-phase factors. The procedure for obtaining it is
straightforward: Find the zeros of Saa(z), which come in pairs zi and 1/z∗i , thus, there
are 2M such zeros. And, group those that lie inside the unit circle into a common factor.
This defines A(z) as a minimum phase polynomial.

3.4 Minimum-Delay Property

Here, we discuss the effect of flipping a zero from the inside to the outside of the unit
circle, on the minimum-delay and minimum-phase properties of the signal. Suppose
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A(z) is of degreeM and has a zero z1 inside the unit circle. Let B(z) be the polynomial
that results by flipping this zero to the outside; that is, z1 → 1/z∗1

A(z) = (1− z1z−1)F(z)

B(z) = (−z∗1 + z−1)F(z)
(3.4.1)

where F(z) is a polynomial of degree M − 1. Both A(z) and B(z) have the same mag-
nitude spectrum. We may think of this operation as sending A(z) through an allpass
filter

B(z)= −z
∗
1 + z−1

1− z1z−1
A(z)

In terms of the polynomial coefficients, Eq. (3.4.1) becomes

an = fn − z1fn−1

bn = −z∗1 fn + fn−1

(3.4.2)

for n = 0,1, . . . ,M, from which we obtain

|an|2 − |bn|2 =
(
1− |z1|2

)(|fn|2 − |fn−1|2
)

(3.4.3)

Summing to get the partial energies, Pa(n)=
∑n
m=0 |am|2, we find

Pa(n)−Pb(n)=
(
1− |z1|2

)|fn|2 , n = 0,1, . . . ,M (3.4.4)

Thus, the partial energy of the sequence a remains greater than that of b for all times
n; that is, A(z) is of earlier delay than B(z). The total energy is, of course, the same
as follows from the fact that F(z) is of degree M − 1, thus, missing the Mth term or
fM = 0. We have then

Pa(n)≥ Pb(n) , n = 0,1, . . . ,M

and in particular
Pa(M)= Pb(M) and Pa(0)≥ Pb(0)

The last inequality can also be stated as |a0| ≥ |b0|, and will be important in our
proof of the minimum-phase property of the prediction-error filter of linear prediction.

3.5 Minimum-Phase Property

The effect of reversing the zero z1 on the phase responses ofA(z) andB(z) of Eq. (3.4.1)
can be seen as follows. For z = ejω, define the phase lag as the negative of the phase
response

A(ω) = |A(ω)|ejArg(ω)

θA(ω) = −Arg(ω)= phase-lag response

and similarly for B(z). SinceA(ω) and B(ω) have the same magnitude, they will differ
only by a phase

A(ω)
B(ω)

= ej(θB−θA) = 1− z1e−jω

−z∗1 + e−jω
= ejω − z1

1− z∗1 ejω
= ejφ(ω)

whereφ(ω) is the phase-response of the all-pass factor (ejω−z1)/(1−z∗1 ejω), so that
θB(ω)−θA(ω)= φ(ω). By taking derivatives with respect toω in the above definition
of φ(ω), it can be easily shown that

dφ(ω)
dω

= 1− |z1|2∣∣ejω − z1
∣∣2 > 0
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which shows thatφ(ω) is an increasing function ofω. Thus, over the frequency interval
0 ≤ ω ≤ π, we have φ(ω)≥ φ(0). It can be verified easily that φ(0)= −2φ0, where
φ0 is the angle with the x-axis of the line between the points z1 and 1, as shown in the
figure below.

Thus, we have θB − θA ≥ φ ≥ −2φ0. The angle φ0 is positive, if z1 lies within the
upper half semi-circle, and negative, if it lies in the lower semi-circle; and, φ0 is zero
if z1 lies on the real axis. If z1 is real-valued, then θB ≥ θA for 0 ≤ ω ≤ π. If z1

is complex valued and we consider the combined effect of flipping the zero z1 and its
conjugate z∗1 , that is, A(z) and B(z) are given by

A(z) = (1− z1z−1)(1− z∗1 z−1)F(z)

B(z) = (−z∗1 + z−1)(−z1 + z−1)F(z)

then, for the phase of the combined factor

ejφ(ω) = ejω − z1

1− z∗1 ejω
· e

jω − z∗1
1− z1ejω

we will have φ(ω)≥ (−2φ0)+(2φ0)= 0, so that θB(ω)−θA(ω)= φ(ω)≥ 0.
Thus, the phase lag of A(z) remains smaller than that of B(z). The phase-lag curve

for the case when A(z) has all its zeros inside the unit circle will remain below all the
other phase-lag curves. The term minimum-phase strictly speaking means minimum
phase lag (over 0 ≤ω ≤ π).

3.6 Spectral Factorization Theorem

We finish our digression on minimum-phase sequences by quoting the spectral factor-
ization theorem [5].

Any rational power spectral density Syy(z) of a (real-valued) stationary signal yn
can be factored in a minimum-phase form

Syy(z)= σ2
εB(z)B(z−1) (3.6.1)

where

B(z)= N(z)
D(z)

(3.6.2)

with both D(z) and N(z) being minimum-phase polynomials; that is, having all their
zeros inside the unit circle. By adjusting the overall constant σ2

ε , both D(z) and N(z)
may be taken to be monic polynomials. Then, they are unique.

This theorem guarantees the existence of a causal and stable random signal generator
filter B(z) for the signal yn of the type discussed in Section 1.11:
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with εn white noise of variance σ2
ε . The minimum-phase property of B(z) also guaran-

tees the stability and causality of the inverse filter 1/B(z), that is, the whitening filter

The proof of the spectral factorization theorem is straightforward. Since Syy(z) is
the power spectral density of a (real-valued) stationary process yn, it will satisfy the
symmetry conditions Syy(z)= Syy(z−1). Therefore, if zi is a zero then 1/zi is also
a zero, and if zi is complex then the reality of Ryy(k) implies that z∗i will also be a
zero. Thus, both zi and 1/z∗i are zeros. Therefore, the numerator polynomial of Syy(z)
is of the type of Eq. (3.3.5) and can be factored into its minimum phase polynomials
N(z)N(z−1). This is also true of the denominator of Syy(z).

All sequential correlations in the original signal yn arise from the filtering action of
B(z) on the white-noise input εn. This follows from Eq. (2.1.14):

Ryy(k)= σ2
ε

∑
n
bn+kbn , B(z)=

∞∑
n=0

bnz−n (3.6.3)

Effectively, we have modeled the statistical autocorrelationRyy(k) by the sample au-
tocorrelation of the impulse response of the synthesis filter B(z). Since B(z) is causal,
such factorization corresponds to an LU, or Cholesky, factorization of the autocorrela-
tion matrix.

This matrix representation can be seen as follows: Let B be the lower triangular
Toeplitz matrix defined exactly as in Eq. (1.11.2)

bni = bn−i
and let the autocorrelation matrix of yn be

Ryy(i, j)= Ryy(i− j)

Then, the transposed matrix BT will have matrix elements

(BT)ni= bi−n
and Eq. (3.6.3) can be written in the form

Ryy(i, j) = Ryy(i− j)= σ2
ε

∑
n
bn+i−jbn = σ2

ε

∑
k
bi−kbj−k

= σ2
ε

∑
k
(B)ik(BT)kj= σ2

ε(BBT)ij

Thus, in matrix notation
Ryy = σ2

εBBT (3.6.4)

This equation is a special case of the more general LU factorization of the Gram-
Schmidt construction given by Eq. (1.5.17). Indeed, the assumption of stationarity im-
plies that the quantity

σ2
ε = E[ε2

n]

is independent of the time n, and therefore, the diagonal matrix Rεε of Eq. (1.5.17)
becomes a multiple of the identity matrix.
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3.7 Minimum-Phase Property of the Prediction-Error Filter

As mentioned in Section 2.8, the minimum-phase property of the prediction-error filter
A(z) of linear prediction is an important property because it guarantees the stability
of the causal inverse synthesis filter 1/A(z). There are many proofs of this property
in the literature [6–10]. Here, we would like to present a simple proof [11] which is
based directly on the fact that the optimal prediction coefficients minimize the mean-
square prediction error. Although we have only discussed first and second order linear
predictors, for the purposes of this proof we will work with the more general case of an
Mth order predictor defined by

ŷn = −[a1yn−1 + a2yn−2 + · · · + aMyn−M]
which is taken to represent the best prediction of yn based on the past M samples
Yn = {yn−1, yn−2, . . . , yn−M}. The corresponding prediction error is

en = yn − ŷn = yn + a1yn−1 + a2yn−2 + · · · + aMyn−M
The best set of prediction coefficients {a1, a2, . . . aM} is found by minimizing the

mean-square prediction error

E(a1, a2, . . . aM) = E[e∗nen]=
M∑

m,k=0

a∗mE[y∗n−myn−k]ak

=
M∑

m,k=0

a∗mRyy(k−m)ak =
M∑

m,k=0

a∗mRyy(m− k)ak
(3.7.1)

where we set a0 = 1. For the proof of the minimum phase property, we do not need
the explicit solution of this minimization problem; we only use the fact that the optimal
coefficients minimize Eq. (3.7.1). The key to the proof is based on the observation that
(3.7.1) can be written in the alternative form

E(a)=
M∑

k=−M
Ryy(k)Raa(k) (3.7.2)

where Raa(k) is the sample autocorrelation of the prediction-error filter sequence a =
[1, a1, a2, . . . , aM]T as defined in Eq. (3.3.1). The equivalence of Eqs. (3.7.1) and (3.7.2)
can be seen easily, either by rearranging the summation indices of (3.7.1), or by using
the results of Problems 2.3 and 2.5.

Example 3.7.1: We demonstrate this explicitly for the M = 2 case. Using the definition (3.3.1)
we have

Raa(0) = |a0|2 + |a1|2 + |a2|2 = 1+ |a1|2 + |a2|2

Raa(1) = Raa(−1)∗= a1a∗0 + a2a∗1 = a1 + a2a∗1

Raa(2) = Raa(−2)∗= a2a∗0 = a2

Since yn is real-valued stationary, we have Ryy(k)= Ryy(−k). Then, Eq. (3.7.1) becomes
explicitly

E(a)=
M∑

m,k=0

a∗mRyy(m− k)ak = [1, a∗1 , a∗2 ]
⎡⎢⎣ Ryy(0) Ryy(1) Ryy(2)
Ryy(1) Ryy(0) Ryy(1)
Ryy(0) Ryy(1) Ryy(2)

⎤⎥⎦
⎡⎢⎣ 1
a1

a2

⎤⎥⎦
= Ryy(0)[1+ a∗1 a1 + a∗2 a2]+Ryy(1)

[
(a1 + a2a∗1 )+(a∗1 + a∗2 a1)

]+Ryy(2)[a2 + a∗2 ]
= Ryy(0)Raa(0)+Ryy(1)

[
Raa(1)+Raa(−1)

]+Ryy(2)[Raa(2)+Raa(−2)
] ��
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Let a = [1, a1, a2, . . . , aM]T be the optimal set of coefficients that minimizes E(a)
and let zi, i = 1,2 . . . ,M, be the zeros of the corresponding prediction-error filter:

1+ a1z−1 + a2z−2 + · · · + aMz−M = (1− z1z−1)(1− z2z−1)· · · (1− zMz−1) (3.7.3)

Reversing any one of the zero factors in this equation, that is, replacing (1−ziz−1) by
its reverse (−z∗i +z−1), results in a sequence that has the same sample autocorrelation
as a. As we have seen, there are 2M such sequences, all with the same sample autocorre-
lation. We would like to show that among these, a is the one having the minimum-phase
property.

To this end, let b = [b0, b1, . . . bM]T be any one of these 2M sequences, and define
the normalized sequence

c = b/b0 = [1, b1/b0, b2/b0, . . . bM/b0]T (3.7.4)

Using the fact that b has the same sample autocorrelation as a, we find for the sample
autocorrelation of c :

Rcc(k)= Rbb(k)/|b0|2 = Raa(k)/|b0|2 (3.7.5)

The performance index (3.7.2) evaluated at c is then

E(c)=
M∑

k=−M
Ryy(k)Rcc(k)=

M∑
k=−M

Ryy(k)Raa(k)/|b0|2 (3.7.6)

or,
E(c)= E(a)/|b0|2 (3.7.7)

Since a minimizes E, it follows that E(c)≥ E(a). Therefore, Eq. (3.7.7) implies that

|b0| ≤ 1 (3.7.8)

This must be true of all bs in the above class. Eq. (3.7.8) then, immediately implies the
minimum-phase property of a. Indeed, choosing b to be that sequence obtained from
(3.7.3) by reversing only the ith zero factor (1− ziz−1) and not the other zero factors,
it follows that

b0 = −z∗i
and therefore Eq. (3.7.8) implies that

|zi| ≤ 1 (3.7.9)

which shows that all the zeros of A(z) are inside the unit circle and thus, A(z) has
minimum phase. An alternative proof based on the Levinson recursion and Rouche’s
theorem of complex analysis will be presented in Chapter 5.

3.8 Problems

3.1 Prove Eq. (3.3.2).

3.2 Using Eq. (3.4.1), show Eqs. (3.4.3) and (3.4.4).

3.3 A random signal yn has autocorrelation function

Ryy(k)= (0.5)|k| , for all k

Find a random signal generator model for yn.
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3.4 Repeat Problem 3.3 when

Ryy(k)= (0.5)|k|+(−0.5)|k| , for all k

3.5 The autocorrelation function of a stationary random signal y(n) is

Ryy(k)= 1−R2

1+R2
R|k| cos(πk/2) , for all k , where 0 < R < 1

(a) Compute the power spectrum Syy(ω) of y(n) and sketch it versus frequency for
various values of R.

(b) Find the signal generator filter for y(n) and determine its difference equation and its
poles and zeros.

3.6 A stationary random signal yn has a rational power spectral density given by

Syy(z)= 2.18− 0.6(z+ z−1)
1.25− 0.5(z+ z−1)

Determine the signal model filter B(z) and the parameter σ2
ε . Write the difference equation

generating yn.

3.7 Let yn = cxn + vn. It is given that

Sxx(z)= Q
(1− az−1)(1− az) , Svv(z)= R , Sxv(z)= 0

where a, c,Q,R are known constants (assume |a| < 1) for the stability of xn.)

(a) Show that the filter model for yn is of the form

B(z)= 1− fz−1

1− az−1

where f has magnitude less than one and is the solution of the algebraic quadratic
equation

aR(1+ f2)= [
c2Q +R(1+ a2)

]
f

and show that the other solution has magnitude greater than one.

(b) Show that f can alternatively be expressed as

f = Ra
R+ c2P

where P is the positive solution of the quadratic equation

Q = P− PRa2

R+ c2P

known as the algebraic Riccati equation. Show that the other solution is negative.
Show that the positivity of P is essential to guarantee that f has magnitude less than
one.

(c) Show that the scale factor σ2
ε that appears in the spectral factorization (3.6.1) can also

be expressed in terms of P as

σ2
ε = R+ c2P

The above method of solution of the spectral factorization problem by reducing it to the
solution of an algebraic Riccati equation is quite general and can be extended to the multi-
channel case.



3.9. References 115

3.8 Consider a stable (but not necessarily causal) sequence bn, −∞ < n <∞ with a z-transform
B(z)

B(z)=
∞∑

n=−∞
bnz−n

Define an infinite Toeplitz matrix B by

Bni = bn−i , for −∞ < n, i <∞

This establishes a correspondence between stable z-transforms or stable sequences and
infinite Toeplitz matrices.

(a) Show that if the sequence bn is causal, then B is lower triangular, as shown here

In the literature of integral operators and kernels, such matrices are rotated by 90o

degrees as shown:

so that the n axis is the horizontal axis. For this reason, in that context they are called
“right Volterra kernel,” or “causal kernels.”

(b) Show that the transposed BT corresponds to the reflected (about the origin) sequence
b−n and to the z-transform B(z−1).

(c) Show that the convolution of two sequences an and bn

cn = an ∗ bn or C(z)= A(z)B(z)

corresponds to the commutative matrix product

C = AB = BA

3.9 Prove Eq. (3.7.2) for anyM.
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4
Linear Estimation of Signals

The problem of estimating one signal from another is one of the most important in
signal processing. In many applications, the desired signal is not available or observable
directly. Instead, the observable signal is a degraded or distorted version of the original
signal. The signal estimation problem is to recover, in the best way possible, the desired
signal from its degraded replica.

We mention some typical examples: (1) The desired signal may be corrupted by
strong additive noise, such as weak evoked brain potentials measured against the strong
background of ongoing EEGs; or weak radar returns from a target in the presence of
strong clutter. (2) An antenna array designed to be sensitive towards a particular “look”
direction may be vulnerable to strong jammers from other directions due to sidelobe
leakage; the signal processing task here is to null the jammers while at the same time
maintaining the sensitivity of the array towards the desired look direction. (3) A signal
transmitted over a communications channel can suffer phase and amplitude distortions
and can be subject to additive channel noise; the problem is to recover the transmitted
signal from the distorted received signal. (4) A Doppler radar processor tracking a
moving target must take into account dynamical noise—such as small purely random
accelerations—affecting the dynamics of the target, as well as measurement errors. (5)
An image recorded by an imaging system is subject to distortions such as blurring due to
motion or to the finite aperture of the system, or other geometric distortions; the prob-
lem here is to undo the distortions introduced by the imaging system and restore the
original image. A related problem, of interest in medical image processing, is that of re-
constructing an image from its projections. (6) In remote sensing and inverse scattering
applications, the basic problem is, again, to infer one signal from another; for example,
to infer the temperature profile of the atmosphere from measurements of the spectral
distribution of infrared energy; or to deduce the structure of a dielectric medium, such
as the ionosphere, by studying its response to electromagnetic wave scattering; or, in
oil exploration to infer the layered structure of the earth by measuring its response to
an impulsive input near its surface.

In this chapter, we pose the signal estimation problem and discuss some of the
criteria used in the design of signal estimation algorithms.

We do not present a complete discussion of all methods of signal recovery and es-
timation that have been invented for applications as diverse as those mentioned above.
Our emphasis is on traditional linear least-squares estimation methods, not only be-
cause they are widely used, but also because they have served as the motivating force
for the development of other estimation techniques and as the yardstick for evaluating
them.

We develop the theoretical solution of the Wiener filter both in the stationary and
nonstationary cases, and discuss its connection to the orthogonal projection, Gram-
Schmidt constructions, and correlation canceling ideas of Chapter 1. By means of an
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example, we introduce Kalman filtering concepts and discuss their connection to Wiener
filtering and to signal modeling. Practical implementations of the Wiener filter are dis-
cussed in Chapters 5 and 7. Other signal recovery methods for deconvolution appli-
cations that are based on alternative design criteria are briefly discussed in Chapter
5, where we also discuss some interesting connections between Wiener filtering/linear
prediction methods and inverse scattering methods.

4.1 Linear and Nonlinear Estimation of Signals

The signal estimation problem can be stated as follows: We wish to estimate a random
signal xn on the basis of available observations of a related signal yn. The available
signal yn is to be processed by an optimal processor that produces the best possible
estimate of xn:

The resulting estimate x̂n will be a function of the observations yn. If the optimal
processor is linear, such as a linear filter, then the estimate x̂n will be a linear function
of the observations. We are going to concentrate mainly on linear processors. However,
we would like to point out that, depending on the estimation criterion, there are cases
where the estimate x̂n may turn out to be a nonlinear function of the yns.

We discuss briefly four major estimation criteria for designing such optimal proces-
sors. They are:

(1) The maximum a posteriori (MAP) criterion.
(2) The maximum likelihood (ML) criterion.
(3) The mean square (MS) criterion.
(4) The linear mean-square (LMS) criterion.

The LMS criterion is a special case of the MS criterion. It requires, a priori, that the
estimate x̂n be a linear function of the yns.† The main advantage of the LMS processor
is that it requires only knowledge of second order statistics for its design, whereas the
other, nonlinear, processors require more detailed knowledge of probability densities.

To explain the various estimation criteria, let us assume that the desired signal xn
is to be estimated over a finite time interval na ≤ n ≤ nb Without loss of generality, we
may assume that the observed signal yn is also available over the same interval. Define
the vectors

x =

⎡⎢⎢⎢⎢⎢⎣
xna
xna+1

...
xnb

⎤⎥⎥⎥⎥⎥⎦ , y =

⎡⎢⎢⎢⎢⎢⎣
yna
yna+1

...
ynb

⎤⎥⎥⎥⎥⎥⎦
For each value of n, we seek the functional dependence

x̂n = x̂n(y)

of x̂n on the given observation vector y that provides the best estimate of xn.

1. The criterion for the MAP estimate is to maximize the a posteriori conditional
density of xn given that y already occurred; namely,

p(xn|y)= maximum (4.1.1)

†Note that the acronym LMS is also used in the context of adaptive filtering, for least mean-square.
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in other words, the optimal estimate x̂n is that xn that maximizes this quantity
for the given vector y; x̂n is therefore the most probable choice resulting from the
given observations y.

2. The ML criterion, on the other hand, selects x̂n to maximize the conditional density
of y given xn, that is,

p(y|xn)= maximum (4.1.2)

This criterion selects x̂n as though the already collected observations y were the
most likely to occur.

3. The MS criterion minimizes the mean-square estimation error

E = E[e2
n]= min, where en = xn − x̂n (4.1.3)

that is, the best choice of the functional dependence x̂n = x̂n(y) is sought that
minimizes this expression. We know from our results of Section 1.4 that the
required solution is the corresponding conditional mean

x̂n = E[xn|y]= MS estimate (4.1.4)

computed with respect to the conditional density p(xn|y).
4. Finally, the LMS criterion requires the estimate to be a linear function of the ob-

servations

x̂n =
nb∑
i=na

h(n, i)yi (4.1.5)

For each n, the weights h(n, i), na ≤ i ≤ nb are selected to minimize the mean-
square estimation error

E = E[e2
n]= E

[
(xn − x̂n)2] = minimum (4.1.6)

With the exception of the LMS estimate, all other estimates x̂n(y) are, in general,
nonlinear functions of y.

Example 4.1.1: If both xn and y are zero-mean and jointly gaussian, then Examples 1.4.1 and
1.4.2 imply that the MS and LMS estimates of xn are the same. Furthermore, since p(xn|y)
is gaussian it will be symmetric about its maximum, which occurs at its mean, that is, at
E[xn|y]. Therefore, the MAP estimate of xn is equal to the MS estimate. In conclusion, for
zero-mean jointly gaussian xn and y, the three estimates MAP, MS, and LMS coincide. ��

Example 4.1.2: To see the nonlinear character and the differences among the various estimates,
consider the following example: A discrete-amplitude, constant-in-time signal x can take
on the three values

x = −1, x = 0, x = 1

each with probability of 1/3. This signal is placed on a known carrier waveform cn and
transmitted over a noisy channel. The received samples are of the form

yn = cnx+ vn , n = 1,2, . . . ,M

where vn are zero-mean white gaussian noise samples of variance σ2
v , assumed to be inde-

pendent of x. The above set of measurements can be written in an obvious vector notation

y = cx+ v

(a) Determine the conditional densities p(y|x) and p(x|y).
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(b) Determine and compare the four alternative estimates MAP, ML, MS, and LMS.

Solution: To compute p(y|x), note that if x is given, then the only randomness left in y arises
from the noise term v. Since vn are uncorrelated and gaussian, they will be independent;
therefore,

p(y|x) = p(v)=
M∏
n=1

p(vn)=
(
2πσ2

v
)−M/2

exp

⎡⎣− 1

2σ2
v

M∑
n=1

v2
n

⎤⎦
= (

2πσ2
v
)−M/2

exp
[
− 1

2σ2
v

v2
]
= (

2πσ2
v
)−M/2

exp
[
− 1

2σ2
v
(y− cx)2

]

Using Bayes’ rule we find p(x|y)= p(y|x)p(x)/p(y). Since

p(x)= 1

3

[
δ(x− 1)+δ(x)+δ(x+ 1)

]
we find

p(x|y)= 1

A
[
p(y|1)δ(x− 1)+p(y|0)δ(x)+p(y| − 1)δ(x+ 1)

]
where the constant A is

A = 3p(y)= 3

∫
p(y|x)p(x)dx = p(y|1)+p(y|0)+p(y| − 1)

To find the MAP estimate of x, the quantity p(x|y) must be maximized with respect to x.
Since the expression for p(x|y) forces x to be one of the three values +1,0,−1, it follows
that the maximum among the three coefficients p(y|1), p(y|0), p(y| − 1) will determine
the value of x. Thus, for a given y we select that x that

p(y|x)= maximum of
{
p(y|1), p(y|0), p(y| − 1)}

Using the gaussian nature of p(y|x), we find equivalently

(y− cx)2= minumum of
{
(y− c)2, y2, (y+ c)2}

Subtracting y2 from both sides, dividing by cTc, and denoting

ȳ = cTy

cTc

we find the equivalent equation

x2 − 2xȳ = min{1− 2ȳ, 0, 1+ 2ȳ}

and in particular, applying these for +1,0,−1, we find

x̂MAP =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1, if ȳ >

1

2

0, if − 1

2
< ȳ <

1

2

−1, if ȳ < −1

2

To determine the ML estimate, we must maximize p(y|x) with respect to x. The ML esti-
mate does not require knowledge of the a priori probability density p(x) of x. Therefore,
differentiating p(y|x) with respect to x and setting the derivative to zero gives

∂
∂x
p(y|x)= 0 or

∂
∂x

lnp(y|x)= 0 or
∂
∂x
(y− cx)2= 0
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which gives

x̂ML = cTy

cTc
= ȳ

The MS estimate is obtained by computing the conditional mean

E[x|y] =
∫
xp(x|y)dx =

∫
x

1

A
[
p(y|1)δ(x− 1)+p(y|0)δ(x)+p(y| − 1)δ(x+ 1)

]
dx

= 1

A
[
p(y|1)−p(y| − 1)

]
, or,

x̂MS = p(y|1)−p(y| − 1)
p(y|1)+p(y|0)+p(y| − 1)

Canceling some common factors from the numerator and denominator, we find the simpler
expression

x̂MS = 2 sinh(2aȳ)
ea + 2 cosh(2aȳ)

, where a = cTc

2σ2
v

Finally, the LMS estimate can be computed as in Example 1.4.3. We find

x̂LMS = cTy

σ2
v

σ2
x
+ cTc

= cTc

σ2
v

σ2
x
+ cTc

ȳ

All four estimates have been expressed in terms of ȳ. Note that the ML estimate is linear
but has a different slope than the LMS estimate. The nonlinearity of the various estimates
is best seen in the following figure:

4.2 Orthogonality and Normal Equations

From now on, we will concentrate on the optimal linear estimate defined by Eqs. (4.1.5)
and (4.1.6). For each time instantn at which an estimate x̂n is sought, the optimal weights
h(n, i), na ≤ i ≤ nb must be determined that minimize the error criterion (4.1.6). In
general, a new set of optimal weights must be computed for each time instant n. In the
special case when the processes xn and yn are stationary and the observations are avail-
able for a long time, that is, na = −∞, the weights become time-invariant in the sense
that h(n, i)= h(n − i), and the linear processor becomes an ordinary time-invariant
linear filter. We will discuss the solution for h(n, i) both for the time-invariant and the
more general cases. The problem of determining the optimal weights h(n, i) according
to the mean-square error minimization criterion (4.1.6) is in general referred to as the
Wiener filtering problem [1–11]. An interesting historical account of the development of
this problem and its ramifications is given in the review article by Kailath [12].

Wiener filtering problems are conventionally divided into three types:
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1. The optimal smoothing problem,
2. The optimal filtering problem, and
3. The optimal prediction problem.

In all cases, the optimal estimate of xn at a given time instant n is given by an
expression of the form (4.1.5), as a linear combination of the available observations yn
in the interval na ≤ n ≤ nb. The division into three types of problems depends on
which of the available observations in that interval are taken into account in making up
the linear combination (4.1.5).

In the smoothing problem, all the observations in the interval [na, nb] are taken
into account. The shaded part in the following figure denotes the range of observations
that are used in the summation of Eq. (4.1.5):

x̂n =
nb∑
i=na

h(n, i)yi

Since some of the observations are to the future of xn, the linear operation is not
causal. This does not present a problem if the sequence yn is already available and
stored in memory.

The optimal filtering problem, on the other hand, requires the linear operation (4.1.5)
to be causal, that is, only those observations that are in the present and past of the
current sample xn must be used in making up the estimate x̂n. This requires that the
matrix of optimal weights h(n, i) be lower triangular, that is,

h(n, i)= 0, for n < i

Thus, in reference to the figure below, only the shaded portion of the observation
interval is used at the current time instant:

x̂n =
n∑
i=na

h(n, i)yi

The estimate x̂n depends on the present and all the past observations, from the fixed
starting point na to the current time instant n. As n increases, more and more observa-
tions are taken into account in making up the estimate, and the actual computation of
x̂n becomes less and less efficient. It is desirable, then, to be able to recast the expres-
sion for x̂n a time-recursive form. This is what is done in Kalman filtering. But, there is
another way to make the Wiener filter computationally manageable. Instead of allowing
a growing number of observations, only the current and the past M observations yi,
i = n,n− 1, . . . , n−M are taken into account. In this case, only (M + 1) filter weights
are to be computed at each time instant n. This is depicted below:

x̂n =
n∑

i=n−M
h(n, i)yi =

M∑
m=0

h(n,n−m)yn−m

This is referred to as the finite impulse response (FIR) Wiener filter. Because of its
simple implementation, the FIR Wiener filter has enjoyed widespread popularity. De-
pending on the particular application, the practical implementation of the filter may
vary. In Section 4.3 we present the theoretical formulation that applies to the station-
ary case; in Chapter 5 we reconsider it as a waveshaping and spiking filter and discuss a
number of deconvolution applications. In Chapter 7 we consider its adaptive implemen-
tation using the Widrow-Hoff LMS algorithm and discuss a number of applications such
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as channel equalization and echo cancellation; we also discuss two alternative adaptive
implementations—the so-called “gradient lattice,” and the “recursive least-squares.”

Finally, the linear prediction problem is a special case of the optimal filtering problem
with the additional stipulation that observations only up to time instant n−D must be
used in obtaining the current estimate x̂n; this is equivalent to the problem of predicting
D units of time into the future. The range of observations used in this case is shown
below:

x̂n =
n−D∑
i=na

h(n, i)yi

Of special interest to us will be the case of one-step prediction, corresponding to the
choice D = 1. This is depicted below:

x̂n =
n−1∑
i=na

h(n, i)yi

If we demand that the prediction be based only on the past M samples (from the
current sample), we obtain the FIR version of the prediction problem, referred to as
linear prediction based on the pastM samples, which is depicted below:

x̂n =
n−1∑
i=n−M

h(n, i)yi =
M∑
m=1

h(n,n−m)yn−m

Next, we set up the orthogonality and normal equations for the optimal weights. We
begin with the smoothing problem. The estimation error is in this case

en = xn − x̂n = xn −
nb∑
i=na

h(n, i)yi (4.2.1)

Differentiating the mean-square estimation error (4.1.6) with respect to each weight
h(n, i), na ≤ i ≤ nb, and setting the derivative to zero, we obtain the orthogonality
equations that are enough to determine the weights:

∂E
∂h(n, i)

= 2E
[
en

∂en
∂h(n, i)

]
= −2E[enyi]= 0 , for na ≤ i ≤ nb , or,

Rey(n, i)= E[enyi]= 0 (orthogonality equations) (4.2.2)

for na ≤ i ≤ nb. Thus, the estimation error en is orthogonal (uncorrelated) to each
observation yi used in making up the estimate x̂n. The orthogonality equations provide
exactly as many equations as there are unknown weights.

Inserting Eq. (4.2.1) for en, the orthogonality equations may be written in an equiv-
alent form, known as the normal equations

E
[(
xn −

nb∑
k=na

h(n, k)yk
)
yi

] = 0 , or,

E[xnyi]=
nb∑
k=na

h(n, k)E[ykyi] (normal equations) (4.2.3)

These determine the optimal weights at the current time instant n. In the vector
notation of Section 4.1, we write Eq. (4.2.3) as

E[xyT]= HE[yyT]

where H is the matrix of weights h(n, i). The optimal H and the estimate are then
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x̂ = Hy = E[xyT]E[yyT]−1y

This is identical to the correlation canceler of Section 1.4. The orthogonality equa-
tions (4.2.2) are precisely the correlation cancellation conditions. Extracting the nth row
of this matrix equation, we find an explicit expression for the nth estimate x̂n

x̂n = E[xnyT]E[yyT]−1y

which is recognized as the projection of the random variable xn onto the subspace
spanned by the available observations; namely, Y = {yna, yna+1, . . . , ynb}. This is a
general result: The minimum mean-square linear estimate x̂n is the projection of xn onto
the subspace spanned by all the observations that are used to make up that estimate.
This result is a direct consequence of the quadratic minimization criterion (4.1.6) and
the orthogonal projection theorem discussed in Section 1.5.

Using the methods of Section 1.4, the minimized estimation error at time instant n
is easily computed by

En = E[enen]= E[enxn]= E
[(
xn −

nb∑
i=na

h(n, i)yi
)
xn

]

= E[x2
n]−

nb∑
i=na

h(n, i)E[yixn]= E[x2
n]−E[xnyT]E[yyT]−1E[yxn]

which corresponds to the diagonal entries of the covariance matrix of the estimation
error e :

Ree = E[eeT]= E[xxT]−E[xyT]E[yyT]−1E[yxT]

The optimum filtering problem is somewhat more complicated because of the causal-
ity condition. In this case, the estimate at time n is given by

x̂n =
n∑
i=na

h(n, i)yi (4.2.4)

Inserting this into the minimization criterion (4.1.6) and differentiating with respect
to h(n, i) for na ≤ i ≤ n, we find again the orthogonality conditions

Rey(n, i)= E[enyi]= 0 for na ≤ i ≤ n (4.2.5)

where the most important difference from Eq. (4.2.2) is the restriction on the range of
i, that is, en is decorrelated only from the present and past values of yi. Again, the
estimation error en is orthogonal to each observation yi that is being used to make up
the estimate. The orthogonality equations can be converted into the normal equations
as follows:

E[enyi]= E
[(
xn −

n∑
k=na

h(n, k)yk
)
yi

] = 0 , or,

E[xnyi]=
n∑

k=na
h(n, k)E[ykyi] for na ≤ i ≤ n , or, (4.2.6)

Rxy(n, i)=
n∑

k=na
h(n, k)Ryy(k, i) for na ≤ i ≤ n (4.2.7)
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Such equations are generally known as Wiener-Hopf equations. Introducing the vec-
tor of observations up to the current time n, namely,

yn = [yna , yna+1, . . . , yn]T

we may write Eq. (4.2.6) in vector form as

E[xnyTn]=
[
h(n,na), h(n,na + 1), . . . , h(n,n)

]
E[ynyTn]

which can be solved for the vector of weights[
h(n,na), h(n,na + 1), . . . , h(n,n)

] = E[xnyTn]E[ynyTn]−1

and for the estimate x̂n:
x̂n = E[xnyTn]E[ynyTn]−1yn (4.2.8)

Again, x̂n is recognized as the projection of xn onto the space spanned by the ob-
servations that are used in making up the estimate; namely, Yn = {yna, yna+1, . . . , yn}.
This solution of Eqs. (4.2.5) and (4.2.7) will be discussed in more detail in Section 4.8,
using covariance factorization methods.

4.3 Stationary Wiener Filter

In this section, we make two assumptions that simplify the structure of Eqs. (4.2.6) and
(4.2.7). The first is to assume stationarity for all signals so that the cross-correlation
and autocorrelation appearing in Eq. (4.2.7) become functions of the differences of their
arguments. The second assumption is to take the initial time na to be the infinite past,
na = −∞, that is, the observation interval is Yn = {yi, −∞ < i ≤ n}.

The assumption of stationarity can be used as follows: Suppose we have the solution
of h(n, i) of Eq. (4.2.7) for the best weights to estimate xn, and wish to determine the
best weights h(n + d, i), na ≤ i ≤ n + d for estimating the sample xn+d at the future
time n + d. Then, the new weights will satisfy the same equations as (4.2.7) with the
changes

Rxy(n+ d, i)=
n+d∑
k=na

h(n+ d, k)Ryy(k, i), for na ≤ i ≤ n+ d (4.3.1)

Making a change of variables i→ i+ d and k→ k+ d, we rewrite Eq. (4.3.1) as

Rxy(n+d, i+d)=
n∑

k=na−d
h(n+d, k+d)Ryy(k+d, i+d), for na−d ≤ i ≤ n (4.3.2)

Now, if we assume stationarity, Eqs. (4.2.7) and (4.3.2) become

Rxy(n− i) =
n∑

k=na
h(n, k)Ryy(k− i) , for na ≤ i ≤ n

Rxy(n− i) =
n∑

k=na−d
h(n+ d, k+ d)Ryy(k− i) , for na − d ≤ i ≤ n

(4.3.3)

If it were not for the differences in the ranges of i and k, these two equations would
be the same. But this is exactly what happens when we make the second assumption
that na = −∞. Therefore, by uniqueness of the solution, we find in this case

h(n+ d, k+ d)= h(n, k)
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and since d is arbitrary, it follows that h(n, k) must be a function of the difference of
its arguments, that is,

h(n, k)= h(n− k) (4.3.4)

Thus, the optimal linear processor becomes a shift-invariant causal linear filter and
the estimate is given by

x̂n =
n∑

i=−∞
h(n− i)yi =

∞∑
i=0

h(i)yn−i (4.3.5)

and Eq. (4.3.3) becomes in this case

Rxy(n− i)=
n∑

k=−∞
h(n, k)Ryy(k− i) , for −∞ < i ≤ n

With the change of variables n− i→ n and n− k→ k, we find

Rxy(n)=
∞∑
k=0

Ryy(n− k)h(k) , for n ≥ 0 (4.3.6)

and written in matrix form⎡⎢⎢⎢⎢⎢⎢⎢⎣

Ryy(0) Ryy(1) Ryy(2) Ryy(3) · · ·
Ryy(1) Ryy(0) Ryy(1) Ryy(2) · · ·
Ryy(2) Ryy(1) Ryy(0) Ryy(1) · · ·
Ryy(3) Ryy(2) Ryy(1) Ryy(0) · · ·

...
...

...
...

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

h(0)
h(1)
h(2)
h(3)

...

⎤⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

Rxy(0)
Rxy(1)
Rxy(2)
Rxy(3)

...

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (4.3.7)

These are the discrete-time Wiener-Hopf equations. Were it not for the restriction
n ≥ 0 (which reflects the requirement of causality), they could be solved easily by z-
transform methods. As written above, they require methods of spectral factorization
for their solution.

Before we discuss such methods, we mention in passing the continuous-time version
of the Wiener-Hopf equation:

Rxy(t)=
∫∞

0
Ryy(t − t′)h(t′)dt′ , t ≥ 0

We also consider the FIR Wiener filtering problem in the stationary case. The obser-
vation interval in this case is Yn = {yi, n −M ≤ i ≤ n}. Using the same arguments as
above we have h(n, i)= h(n − i), and the estimate x̂n is obtained by an ordinary FIR
linear filter

x̂n =
n∑

i=n−M
h(n− i)yi = h(0)yn + h(1)yn−1 + · · · + h(M)yn−M (4.3.8)

where the (M+1) filter weightsh(0), h(1), . . . , h(M) are obtained by the (M+1)×(M+
1) matrix version of the Wiener-Hopf normal equations:⎡⎢⎢⎢⎢⎢⎢⎢⎣

Ryy(0) Ryy(1) Ryy(2) · · · Ryy(M)
Ryy(1) Ryy(0) Ryy(1) · · · Ryy(M − 1)
Ryy(2) Ryy(1) Ryy(0) · · · Ryy(M − 2)
...

...
...

...
Ryy(M) Ryy(M − 1) Ryy(M − 2) · · · Ryy(0)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

h(0)
h(1)
h(2)

...
h(M)

⎤⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

Rxy(0)
Rxy(1)
Rxy(2)

...
Rxy(M)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(4.3.9)
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Exploiting the Toeplitz property of the matrix Ryy, the above matrix equation can
be solved efficiently using Levinson’s algorithm. This will be discussed in Chapter 5.
In Chapter 7, we will consider adaptive implementations of the FIR Wiener filter which
produce the optimal filter weights adaptively without requiring prior knowledge of the
autocorrelation and cross-correlation matrices Ryy and Rxy and without requiring any
matrix inversion.

Fig. 4.1 Time-Invariant Wiener Filter.

We summarize our results on the stationary Wiener filter in Fig. 4.1. The optimal
filter weights h(n), n = 0,1,2, . . . are computed from Eq. (4.3.7) or Eq. (4.3.9). The
action of the filter is precisely that of the correlation canceler: The filter processes the
observation signal yn causally to produce the best possible estimate x̂n of xn, and then
it proceeds to cancel it from the output en. As a result, the output en is no longer
correlated with any of the present and past values of yn, that is, E[enyn−i]= 0, for
i = 0,1,2, . . . . As we remarked in Section 1.4, it is better to think of x̂n as the optimal
estimate of that part of the primary signal xn which happens to be correlated with the
secondary signal yn. This follows from the property that if xn = x1(n)+x2(n) with
Rx2y = 0, then Rxy = Rx1y. Therefore, the solution of Eq. (4.3.7) for the best weights to
estimate xn is also the solution for the best weights to estimate x1(n). The filter may
also be thought of as the optimal signal separator of the two signal components x1(n)
and x2(n).

4.4 Construction of the Wiener Filter by Prewhitening

The normal equations (4.3.6) would have a trivial solution if the sequence yn were a
white-noise sequence with delta-function autocorrelation. Thus, the solution procedure
is first to whiten the sequence yn and then solve the normal equations. To this end, let
yn have a signal model, as guaranteed by the spectral factorization theorem

Syy(z)= σ2
εB(z)B(z−1) (4.4.1)

where εn is the driving white noise, and B(z) a minimal-phase filter. The problem
of estimating xn in terms of the sequence yn becomes equivalent to the problem of
estimating xn in terms of the white-noise sequence εn :

If we could determine the combined filter

F(z)= B(z)H(z)

we would then solve for the desired Wiener filter H(z)

H(z)= F(z)
B(z)

(4.4.2)



128 4. Linear Estimation of Signals

Since B(z) is minimum-phase, the indicated inverse 1/B(z) is guaranteed to be
stable and causal. Let fn be the causal impulse response of F(z). Then, it satisfies the
normal equations of the type of Eq. (4.3.6):

Rxε(n)=
∞∑
i=0

fiRεε(n− i) , n ≥ 0 (4.4.3)

Since Rεε(n− i)= σ2
εδ(n− i), Eq. (4.4.3) collapses to

Rxε(n)= σ2
ε fn , n ≥ 0 , or,

fn = Rxε(n)σ2
ε

, for n ≥ 0 (4.4.4)

Next, we compute the corresponding z-transform F(z)

F(z)=
∞∑
n=0

fnz−n = 1

σ2
ε

∞∑
n=0

Rxε(n)z−n = 1

σ2
ε

[
Sxε(z)

]
+ (4.4.5)

where
[
Sxε(z)

]
+ denotes the causal part of the double-sided z-transform Sxε(z). Gen-

erally, the causal part of a z-transform

G(z)=
∞∑

n=−∞
gnz−n =

−1∑
n=−∞

gnz−n +
∞∑
n=0

gnz−n

is defined as [
G(z)

]
+ =

∞∑
n=0

gnz−n

The causal instruction in Eq. (4.4.5) was necessary since the above solution for fn
was valid only for n ≥ 0. Since yn is the output of the filter B(z) driven by εn, it follows
that

Sxy(z)= Sxε(z)B(z−1) or Sxε(z)= Sxy(z)B(z−1)
Combining Eqs. (4.4.2) and (4.4.5), we finally find

H(z)= 1

σ2
εB(z)

[ Sxy(z)
B(z−1)

]
+

(Wiener filter) (4.4.6)

Thus, the construction of the optimal filter first requires the spectral factorization of
Syy(z) to obtain B(z), and then use of the above formula. This is the optimal realizable
Wiener filter based on the infinite past. If the causal instruction is ignored, one obtains
the optimal unrealizable Wiener filter

Hunreal(z)= Sxy(z)
σ2
εB(z)B(z−1)

= Sxy(z)
Syy(z)

(4.4.7)

The minimum value of the mean-square estimation error can be conveniently ex-
pressed by a contour integral, as follows

E = E[e2
n]= E

[
en(xn − x̂n)

] = E[enxn]−E[enx̂n]= E[enxn]= Rex(0)
=

∮
u.c.
Sex(z)

dz
2πjz

=
∮

u.c.

[
Sxx(z)−Sx̂x(z)

] dz
2πjz

, or,

E =
∮

u.c.

[
Sxx(z)−H(z)Syx(z)

] dz
2πjz

(4.4.8)
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4.5 Wiener Filter Example

This example, in addition to illustrating the above ideas, will also serve as a short intro-
duction to Kalman filtering. It is desired to estimate the signal xn on the basis of noisy
observations

yn = xn + vn
where vn is white noise of unit variance, σ2

v = 1, uncorrelated with xn. The signal xn is
a first order Markov process, having a signal model

xn+1 = 0.6xn +wn
where wn is white noise of variance σ2

w = 0.82. Enough information is given above to
determine the required power spectral densities Sxy(z) and Syy(z). First, we note that
the signal generator transfer function for xn is

M(z)= 1

z− 0.6

so that

Sxx(z)= σ2
wM(z)M(z−1)= 0.82

(z− 0.6)(z−1 − 0.6)
= 0.82

(1− 0.6z−1)(1− 0.6z)

Then, we find

Sxy(z) = Sx(x+v)(z)= Sxx(z)+Sxv(z)= Sxx(z)= 0.82

(1− 0.6z−1)(1− 0.6z)

Syy(z) = S(x+v)(x+v)(z)= Sxx(z)+Sxv(z)+Svx(z)+Svv(z)= Sxx(z)+Svv(z)

= 0.82

(1− 0.6z−1)(1− 0.6z)
+ 1 = 0.82+ (1− 0.6z−1)(1− 0.6z)

(1− 0.6z−1)(1− 0.6z)

= 2(1− 0.3z−1)(1− 0.3z)
(1− 0.6z−1)(1− 0.6z)

= 2 · 1− 0.3z−1

1− 0.6z−1
· 1− 0.3z

1− 0.6z

= σ2
εB(z)B(z−1)

Then according to Eq. (4.4.6), we must compute the causal part of

G(z)= Sxy(z)
B(z−1)

=
0.82

(1− 0.6z−1)(1− 0.6z)
1− 0.3z
1− 0.6z

= 0.82

(1− 0.6z−1)(1− 0.3z)

This may be done by partial fraction expansion, but the fastest way is to use the
contour inversion formula to compute gk for k ≥ 0, and then resum the z-transform:

gk =
∮

u.c.
G(z)zk

dz
2πjz

=
∮

u.c.

0.82zk

(1− 0.3z)(z− 0.6)
dz

2πj

= (residue at z = 0.6) = 0.82(0.6)k

1− (0.3)(0.6) = (0.6)
k , k ≥ 0

Resumming, we find the causal part

[
G(z)

]
+ =

∞∑
k=0

gkz−k = 1

1− 0.6z−1

Finally, the optimum Wiener estimation filter is
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H(z)= 1

σ2
εB(z)

[ Sxy(z)
B(z−1)

]
+
=

[
G(z)

]
+

σ2
εB(z)

= 0.5
1− 0.3z−1

(4.5.1)

which can be realized as the difference equation

x̂n = 0.3x̂n−1 + 0.5yn (4.5.2)

The estimation error is also easily computed using the contour formula of Eq. (4.4.8):

E = E[e2
n]= σ2

e =
∮

u.c.

[
Sxx(z)−H(z)Syx(z)

] dz
2πjz

= 0.5

To appreciate the improvement afforded by filtering, this error must be compared
with the error in case no processing is made and yn is itself taken to represent a noisy
estimate of xn. The estimation error in the latter case is yn − xn = vn, so that σ2

v = 1.
Thus, the gain afforded by processing is

σ2
e

σ2
v
= 0.5 or 3 dB

4.6 Wiener Filter as Kalman Filter

We would like to cast this example in a Kalman filter form. The difference equation
(4.5.2) for the Wiener filter seems to have the “wrong” state transition matrix; namely,
0.3 instead of 0.6, which is the state matrix for the state model of xn. However, it is not
accidental that the Wiener filter difference equation may be rewritten in the alternative
form

x̂n = 0.6x̂n−1 + 0.5(yn − 0.6x̂n−1)

The quantity x̂n is the best estimate of xn, at time n, based on all the observations
up to that time, that is, Yn = {yi, −∞ < i ≤ n}. To simplify the subsequent notation,
we denote it by x̂n/n. It is the projection of xn on the space Yn. Similarly, x̂n−1 denotes
the best estimate of xn−1, based on the observations up to time n − 1, that is, Yn−1 =
{yi, −∞ < i ≤ n− 1}. The above filtering equation is written in this notation as

x̂n/n = 0.6x̂n−1/n−1 + 0.5(yn − 0.6x̂n−1/n−1) (4.6.1)

It allows the computation of the current best estimate x̂n/n, in terms of the previous
best estimate x̂n−1/n−1 and the new observation yn that becomes available at the current
time instant n.

The various terms of Eq. (4.6.1) have nice interpretations: Suppose that the best esti-
mate x̂n−1/n−1 of the previous sample xn−1 is available. Even before the next observation
yn comes in, we may use this estimate to make a reasonable prediction as to what the
next best estimate ought to be. Since we know the system dynamics of xn, we may try
to “boost” x̂n−1/n−1 to the next time instant n according to the system dynamics, that
is, we take

x̂n/n−1 = 0.6x̂n−1/n−1 = prediction of xn on the basis of Yn−1 (4.6.2)

Since yn = xn + vn, we may use this prediction of xn to make a prediction of the
next measurement yn, that is, we take

ŷn/n−1 = x̂n/n−1 = prediction of yn on the basis of Yn−1 (4.6.3)
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If this prediction were perfect, and if the next observation yn were noise free, then
this would be the value that we would observe. Since we actually observe yn, the obser-
vation or innovations residual will be

αn = yn − ŷn/n−1 (4.6.4)

This quantity represents that part of yn that cannot be predicted on the basis of
the previous observations Yn−1. It represents the truly new information contained in
the observation yn. Actually, if we are making the best prediction possible, then the
most we can expect of our prediction is to make the innovations residual a white-noise
(uncorrelated) signal, that is, what remains after we make the best possible prediction
should be unpredictable. According to the general discussion of the relationship be-
tween signal models and linear prediction given in Section 1.16, it follows that if ŷn/n−1

is the best predictor of yn thenαn must be the whitening sequence that drives the signal
model of yn. We shall verify this fact shortly. This establishes an intimate connection
between the Wiener/Kalman filtering problem and the signal modeling problem. If we
overestimate the observation yn the innovation residual will be negative; and if we un-
derestimate it, the residual will be positive. In either case, we would like to correct our
tentative estimate in the right direction. This may be accomplished by

x̂n/n = x̂n/n−1 +G(yn − ŷn/n−1)= 0.6x̂n−1/n−1 +G(yn − 0.6x̂n−1/n−1) (4.6.5)

where the gain G, known as the Kalman gain, should be a positive quantity. The predic-
tion/correction procedure defined by Eqs. (4.6.2) through (4.6.5) is known as the Kalman
filter. It should be clear that any value for the gain G will provide an estimate, even if
suboptimal, of xn. Our solution for the Wiener filter has precisely the above structure
with a gain G = 0.5. This value is optimal for the given example. It is a very instruc-
tive exercise to show this in two ways: First, with G arbitrary, the estimation filter of
Eq. (4.6.5) has transfer function

H(z)= G
1− 0.6(1−G)z−1

Insert this expression into the mean-square estimation error E = E[e2
n], where en =

xn − x̂n/n, and minimize it with respect to the parameter G. This should give G = 0.5.
Alternatively,G should be such that to render the innovations residual (4.6.4) a white

noise signal. In requiring this, it is useful to use the spectral factorization model for yn,
that is, the fact that yn is the output of B(z) when driven by the white noise signal εn.
Working with z-transforms, we have:

α(z) = Y(z)−0.6z−1X̂(z)= Y(z)−0.6z−1H(z)Y(z)

=
[

1− 0.6z−1 G
1− 0.6(1−G)z−1

]
Y(z)=

[
1− 0.6z−1

1− 0.6(1−G)z−1

]
Y(z)

=
[

1− 0.6z−1

1− 0.6(1−G)z−1

][
1− 0.3z−1

1− 0.6z−1

]
ε(z)=

[
1− 0.3z−1

1− 0.6(1−G)z−1

]
ε(z)

Since εn is white, it follows that the transfer function relationship between αn and
εn must be trivial; otherwise, there will be sequential correlations present in αn. Thus,
we must have 0.6(1−G)= 0.3, or G = 0.5; and in this case, αn = εn. It is also possible
to set 0.6(1−G)= 1/0.3, but this would correspond to an unstable filter.

We have obtained a most interesting result; namely, that when the Wiener filtering
problem is recast into its Kalman filter form given by Eq. (4.6.l) , then the innovations
residual αn, which is computable on line with the estimate x̂n/n, is identical to the
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whitening sequence εn of the signal model of yn. In other words, the Kalman filter can
be thought of as the whitening filter for the observation signal yn.

To appreciate further the connection between Wiener and Kalman filters and between
Kalman filters and the whitening filters of signal models, we consider a generalized
version of the above example and cast it in standard Kalman filter notation.

It is desired to estimate xn from yn. The signal model for xn is taken to be the
first-order autoregressive model

xn+1 = axn +wn (state model) (4.6.6)

with |a| < 1. The observation signal yn is related to xn by

yn = cxn + vn (measurement model) (4.6.7)

It is further assumed that the state and measurement noises, wn and vn, are zero-
mean, mutually uncorrelated, white noises of variances Q and R, respectively, that is,

E[wnwi]= Qδni , E[vnvi]= Rδni , E[wnvi]= 0 (4.6.8)

We also assume that vn is uncorrelated with the initial value of xn so that vn and xn
will be uncorrelated for all n. The parameters a, c,Q,R are assumed to be known. Let
x1(n) be the time-advanced version of xn :

x1(n)= xn+1

and consider the two related Wiener filtering problems of estimating xn and x1(n) on
the basis of Yn = {yi, −∞ < i ≤ n}, depicted below

The problem of estimating x1(n)= xn+1 is equivalent to the problem of one-step
prediction into the future on the basis of the past and present. Therefore, we will de-
note this estimate by x̂1(n)= x̂n+1/n. The state equation (4.6.6) determines the spectral
density of xn :

Sxx(z)= 1

(z− a)(z−1 − a) Sww(z)=
Q

(1− az−1)(1− az)
The observation equation (4.6.7) determines the cross-densities

Sxy(z) = cSxx(z)+Sxv(z)= cSxx(z)
Sx1y(z) = zSxy(z)= zcSxx(z)

where we used the filtering equation X1(z)= zX(z). The spectral density of yn can be
factored as follows:

Syy(z) = c2Sxx(z)+Svv(z)= c2Q
(1− az−1)(1− az) +R

= c
2Q +R(1− az−1)(1− az)
(1− az−1)(1− az) ≡ σ2

ε

(
1− fz−1

1− az−1

)(
1− fz
1− az

)

where f and σ2
ε satisfy the equations

fσ2
ε = aR (4.6.9)

(1+ f2)σ2
ε = (1+ a2)R (4.6.10)
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and f has magnitude less than one. Thus, the corresponding signal model for yn is

B(z)= 1− fz−1

1− az−1
(4.6.11)

Next, we compute the causal parts as required by Eq. (4.4.6):[ Sxy(z)
B(z−1)

]
+
=

[
cQ

(1− az−1)(1− fz)

]
+
= cQ

1− fa
1

1− az−1

[Sx1y(z)
B(z−1)

]
+
=

[
cQz

(1− az−1)(1− fz)

]
+
= cQa

1− fa
1

1− az−1

Using Eq. (4.4.6), we determine the Wiener filters H(z) and H1(z) as follows:

H(z)= 1

σ2
εB(z)

[ Sxy(z)
B(z−1)

]
+
=

cQ/(1− fa)
(1− az−1)

σ2
ε

(
1− fz−1

1− az−1

) =
(

cQ
σ2
ε(1− fa)

)
1− fz−1

or, defining the gain G by

G = cQ
σ2
ε(1− fa) (4.6.12)

we finally find

H(z)= G
1− fz−1

(4.6.13)

H1(z)= aH(z)= K
1− fz−1

(4.6.14)

where in Eq. (4.6.14) we defined a related gain, also called the Kalman gain, as follows:

K = aG = cQa
σ2
ε(1− fa) (4.6.15)

Eq. (4.6.14) immediately implies that

x̂n+1/n = ax̂n/n (4.6.16)

which is the precise justification of Eq. (4.6.2). The difference equations of the two filters
are

x̂n+1/n = f x̂n/n−1 +Kyn
x̂n/n = f x̂n−1/n−1 +Gyn

(4.6.17)

Using the results of Problem 3.7, we may express all the quantities f , σ2
ε , K, and G

in terms of a single positive quantity P which satisfies the algebraic Riccati equation:

Q = P− PRa2

R+ c2P
(4.6.18)

Then, we find the interrelationships

K = aG = acP
R+ c2P

, σ2
ε = R+ c2P , f = a− cK = Ra

R+ c2P
(4.6.19)

It is left as an exercise to show that the minimized mean-square estimation errors
are given in terms of P by

E[e2
n/n−1]= P , E[e2

n/n]=
RP

R+ c2P
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where

en/n−1 = xn − x̂n/n−1 , en/n = xn − x̂n/n
are the corresponding estimation errors for the optimally predicted and filtered esti-
mates, respectively. Using Eq. 4.6.19), we may rewrite the filtering equation (4.6.17) in
the following forms:

x̂n+1/n = (a− cK)x̂n/n−1 +Kyn , or,

x̂n+1/n = ax̂n/n−1 +K(yn − cx̂n/n−1) , or,

x̂n+1/n = ax̂n/n−1 +K(yn − ŷn/n−1)

(4.6.20)

where we set
ŷn/n−1 = cx̂n/n−1 (4.6.21)

A realization of the estimation filter based on (4.6.20) is shown below:

Replacing K = aG and using Eq. (4.6.16) in (4.6.20), we also find

x̂n/n = x̂n/n−1 +G(yn − ŷn/n−1) (4.6.22)

The quantity ŷn/n−1 defined in Eq. (4.6.21) is the best estimate of yn based on its
past Yn−1. This can be seen in two ways: First, using the results of Problem 1.8 on the
linearity of the estimates, we find

ŷn/n−1 = &cxn + vn = cx̂n/n−1 + v̂n/n−1 = cx̂n/n−1

where the term v̂n/n−1 was dropped. This term represents the estimate of vn on the
basis of the past ys; that is, Yn−1. Since vn is white and also uncorrelated with xn, it
follows that it will be uncorrelated with all past ys; therefore, v̂n/n−1 = 0. The second
way to show that ŷn/n−1 is the best prediction of yn is to show that the innovations
residual

αn = yn − ŷn/n−1 = yn − cx̂n/n−1 (4.6.23)

is a white-noise sequence and coincides with the whitening sequence εn of yn. Indeed,
working in the z-domain and using Eq. (4.6.17) and the signal model of yn we find

α(z) = Y(z)−cz−1X̂1(z)= Y(z)−cz−1H1(z)Y(z)

=
[

1− cz−1 K
1− fz−1

]
Y(z)=

[
1− (f + cK)z−1

1− fz−1

]
Y(z)

=
[

1− az−1

1− fz−1

]
Y(z)= 1

B(z)
Y(z)= ε(z)

which implies that
αn = εn

Finally, we note that the recursive updating of the estimate of xn given by Eq. (4.6.22)
is identical to the result of Problem 1.12.

Our purpose in presenting this example was to tie together a number of ideas from
Chapter 1 (correlation canceling, estimation, Gram-Schmidt orthogonalization, linear
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prediction, and signal modeling) to ideas from this chapter on Wiener filtering and its
recursive reformulation as a Kalman filter [8–10, 12–18].

We conclude this section by presenting a simulation of this example defined by the
following choice of parameters:

a = 0.95 , c = 1 , Q = 1− a2 , R = 1

The above choice for Q normalizes the variance of xn to unity. Solving the Riccati
equation (4.6.18) and using Eq. (4.6.19), we find

P = 0.3122 , K = 0.2261 , G = 0.2380 , f = a− cK = 0.7239

Figure 4.2 shows 100 samples of the observed signal yn together with the desired
signal xn. The signal yn processed through the Wiener filter H(z) defined by the above
parameters is shown in Fig. 4.3 together with xn. The tracking properties of the filter
are evident from the graph. It should be emphasized that this is the best one can do by
means of ordinary causal linear filtering!
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Fig. 4.2 Desired signal and its noisy observation.
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Fig. 4.3 Best estimate of desired signal.

4.7 Construction of the Wiener Filter by the Gapped Function

Next, we would like to give an alternative construction of the optimal Wiener filter based
on the concept of the gapped function. This approach is especially useful in linear pre-
diction. The gapped function is defined as the cross-correlation between the estimation
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error en and the observation sequence yn, as follows:

g(k)= Rey(k)= E[enyn−k] , for −∞ < k <∞ (4.7.1)

This definition is motivated by the orthogonality equations which state that the
prediction error en must be orthogonal to all of the available observations; namely,
Yn = {yi , −∞ < i ≤ n} = {yn−k , k ≥ 0}. That is, for the optimal set of filter weights
we must have

g(k)= Rey(k)= E[enyn−k]= 0 , for k ≥ 0 (4.7.2)

and g(k) develops a right-hand side gap. On the other hand, g(k) may be written in
the alternative form

g(k)= E[enyn−k]= E
[(
xn −

∞∑
i=0

hiyn−i
)
yn−k

] = Rxy(k)− ∞∑
i=0

hiRyy(k− i) , or,

g(k)= Rey(k)= Rxy(k)−
∞∑
i=0

hiRyy(k− i) (4.7.3)

Taking z-transforms of both sides we find

G(z)= Sey(z)= Sxy(z)−H(z)Syy(z)

Because of the gap conditions, the left-hand side contains only positive powers of
z, whereas the right-hand side contains both positive and negative powers of z. Thus,
the non-positive powers of z must drop out of the right side. This condition precisely
determines H(z). Introducing the spectral factorization of Syy(z) and dividing both
sides by B(z−1) we find

G(z) = Sxy(z)−H(z)Syy(z)= Sxy(z)−H(z)σ2
εB(z)B(z−1)

G(z)
B(z−1)

= Sxy(z)
B(z−1)

−σ2
εH(z)B(z)

The z-transform B(z−1) is anticausal and, because of the gap conditions, so is the
ratio G(z)/B(z−1). Therefore, taking causal parts of both sides and noting that the
product H(z)B(z) is already causal, we find

0 =
[ Sxy(z)
B(z−1)

]
+
−σ2

εH(z)B(z)

which may be solved for H(z) to give Eq. (4.4.6).

4.8 Construction of the Wiener Filter by Covariance Factor-

ization

In this section, we present a generalization of the gapped-function method to the more
general non-stationary and/or finite-past Wiener filter. This is defined by the Wiener-
Hopf equations (4.2.7), which are equivalent to the orthogonality equations (4.2.5). The
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latter are the non-stationary versions of the gapped function of the previous section.
The best way to proceed is to cast Eqs. (4.2.5) in matrix form as follows: Without loss
of generality we may take the starting point na = 0. The final point nb is left arbitrary.
Introduce the vectors

x =

⎡⎢⎢⎢⎢⎢⎣
x0

x1

...
xnb

⎤⎥⎥⎥⎥⎥⎦ , y =

⎡⎢⎢⎢⎢⎢⎣
y0

y1

...
ynb

⎤⎥⎥⎥⎥⎥⎦
and the corresponding correlation matrices

Rxy = E[xyT] , Ryy = E[yyT]

The filtering equation (4.2.4) may be written in vector form as

x̂ = Hy (4.8.1)

where H is the matrix of optimal weights {h(n, i)}. The causality of the filtering op-
eration (4.8.l), requires H to be lower-triangular. The minimization problem becomes
equivalent to the problem of minimizing the mean-square estimation error subject to
the constraint that H be lower-triangular. The minimization conditions are the normal
equations (4.2.5) which, in this matrix notation, state that the matrix Rey has no lower-
triangular (causal) part; or, equivalently, that Rey is strictly upper-triangular (i.e., even
the main diagonal of Rey is zero), therefore

Rey = strictly upper triangular (4.8.2)

Inserting Eq. (4.8.1) into Rey we find

Rey = E[eyT]= E[
(x−Hy)yT

]
, or,

Rey = Rxy −HRyy (4.8.3)

The minimization conditions (4.8.2) require H to be that lower-triangular matrix
which renders the combination (4.8.3) upper-triangular. In other words, H should be
such that the lower triangular part of the right-hand side must vanish. To solve Eqs.
(4.8.2) and (4.8.3), we introduce the LU Cholesky factorization of the covariance matrix
Ryy given by

Ryy = BRεεBT (4.8.4)

where B is unit lower-triangular, and Rεε is diagonal. This was discussed in Section 1.5.
Inserting this into Eq. (4.8.3) we find

Rey = Rxy −HRyy = Rxy −HBRεεBT (4.8.5)

Multiplying by the inverse transpose of B we obtain

ReyB−T = RxyB−T −HBRεε (4.8.6)

Now, the matrix B−T is unit upper-triangular, but Rey is strictly upper, therefore,
the product RxyB−T will be strictly upper. This can be verified easily for any two such
matrices. Extracting the lower-triangular parts of both sides of Eq. (4.8.6) we find

0 = [
RxyB−T

]
+ −HBRεε
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where we used the fact that the left-hand side was strictly upper and that the term
HBRεε was already lower-triangular. The notation [ ]+ denotes the lower triangular
part of a matrix including the diagonal. We find finally

H = [
RxyB−T

]
+R

−1
εε B−1 (4.8.7)

This is the most general solution of the Wiener filtering problem [18, 19]. It includes
the results of the stationary case, as a special case. Indeed, if all the signals are station-
ary, then the matricesRxy, B, andBT become Toeplitz and have a z-transform associated
with them as discussed in Problem 3.8. Using the results of that problem, it is easily
seen that Eq. (4.8.7) is the time-domain equivalent of Eq. (4.4.6).

The prewhitening approach of Section 4.4 can also be understood in the present
matrix framework. Making the change of variables

y = Bεεε

we find that Rxy = E[xyT]= E[xεεεT]BT = RxεBT, and therefore, RxyB−T = Rxε and the
filter H becomes H = [Rxε]+R−1

εε B−1. The corresponding estimate is then

x̂ = Hy = HBεεε = Fεεε , where F = HB = [Rxε]+R−1
εε (4.8.8)

This is the matrix equivalent of Eq. (4.4.5). The matrix F is lower-triangular by con-
struction. Therefore, to extract the nth component x̂n of Eq. (4.8.8), it is enough to
consider the n×n submatrices as shown below:

The nth row of F is f(n)T= E[xnεεεTn]E[εεεnεεεTn]−1. Therefore, the nth estimate be-
comes

x̂n = f(n)Tεεεn = E[xnεεεTn]E[εεεnεεεTn]−1εεεn

which may also be written in the recursive form

x̂n/n =
n∑
i=0

E[xnεi]E[εiεi]−1εi =
n−1∑
i=0

E[xnεi]E[εiεi]−1εi +Gnεn , or,

x̂n/n = x̂n/n−1 +Gnεn (4.8.9)

where we made an obvious change in notation, and Gn = E[xnεn]E[εnεn]−1. This is
identical to Eq. (4.6.22); in the stationary case, Gn is a constant, independent of n. We
can also recast the nth estimate in “batch” form, expressed directly in terms of the
observation vector yn = [y0, y1, . . . , yn]T. By considering the n×n subblock part of the
Gram-Schmidt construction, we may write yn = Bnεεεn, where Bn is unit lower-triangular.
Then, x̂n can be expressed as

x̂n = E[xnεεεTn]E[εεεnεεεTn]−1εεεn = E[xnyTn]E[ynyTn]−1yn

which is identical to Eq. (4.2.8).
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4.9 The Kalman Filter

The Kalman filter discussion of Section 4.6 and its equivalence to the Wiener filter was
based on the asymptotic Kalman filter for which the observations were available from
the infinite past to the present, namely, {yi , −∞ < i ≤ n}. In Section 4.7, we solved the
most general Wiener filtering problem based on the finite past for which the observation
space was

Yn = {y0, y1, . . . , yn} (4.9.1)

Here, we recast these results in a time-recursive form and obtain the time-varying
Kalman filter for estimating xn based on the finite observation subspace Yn. We also
discuss its asymptotic properties for large n and show that it converges to the steady-
state Kalman filter of Section 4.6.

Our discussion is based on Eq. (4.8.9), which is essentially the starting point in
Kalman’s original derivation [13]. To make Eq. (4.8.9) truly recursive, we must have
a means of recursively computing the required gain Gn from one time instant to the
next. As in Section 4.8, we denote by x̂n/n and x̂n/n−1 the optimal estimates of xn based
on the observation subspaces Yn and Yn−1, defined in Eq. (4.9.1), with the initial condi-
tion x̂0/−1 = 0. Iterating the state and measurement models (4.6.6) and (4.6.7) starting
at n = 0, we obtain the following two results, previously derived for the steady-state
case

x̂n+1/n = ax̂n/n , ŷn/n−1 = cx̂n/n−1 (4.9.2)

The proof of both is based on the linearity property of estimates; for example,

x̂n+1/n = &axn +wn = ax̂n/n + ŵn/n = ax̂n/n
where ŵn/n was set to zero becausewn does not depend on any of the observations Yn.
This is seen as follows. The iteration of the state equation (4.6.6) leads to the expression
xn = anx0+an−1w0+an−2w1+· · ·+awn−2+wn−1. It follows from this and Eq. (4.6.7)
that the observation subspace Yn will depend only on

{x0,w0,w1, . . . ,wn−1, v0, v1, . . . , vn}
Making the additional assumption that x0 is uncorrelated withwn it follows thatwn

will be uncorrelated with all random variables in the above set, and thus, with Yn. The
second part of Eq. (4.9.2) is shown by similar arguments. Next, we develop the recursions
for the gain Gn. Using Eq. (4.8.9), the estimation and prediction errors may be related
as follows

en/n = xn − x̂n/n = xn − x̂n/n−1 −Gnεn = en/n−1 −Gnεn
Taking the correlation of both sides with xn we find

E[en/nxn]= E[en/n−1xn]−GnE[εnxn] (4.9.3)

Using the orthogonality properties E[en/nx̂n/n]= 0 and E[en/n−1x̂n/n−1]= 0, which
follow from the optimality of the two estimates x̂n/n and x̂n/n−1, we can write the mean-
square estimation and prediction errors as

Pn/n = E[e2
n/n]= E[en/nxn] , Pn/n−1 = E[e2

n/n−1]= E[en/n−1xn] (4.9.4)

We find also

εn = yn − ŷn/n−1 = (cxn + vn)−cx̂n/n−1 = cen/n−1 + vn
Using the fact that en/n−1 depends only on xn andYn−1, it follows that the two terms

in the right-hand side are uncorrelated with each other. Thus,

E[ε2
n]= c2E[e2

n/n−1]+E[v2
n]= c2Pn/n−1 +R (4.9.5)
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also
E[εnxn]= cE[en/n−1xn]+E[vnxn]= cPn/n−1 (4.9.6)

Therefore, the gain Gn is computable by

Gn = E[εnxn]E[ε2
n]

= cPn/n−1

R+ c2Pn/n−1
(4.9.7)

Using Eqs. (4.9.4), (4.9.6), and (4.9.7) into Eq. (4.9.3), we obtain

Pn/n = Pn/n−1 −GncPn/n−1 = Pn/n−1 − c2Pn/n−1

R+ c2Pn/n−1
= RPn/n−1

R+ c2Pn/n−1
(4.9.8)

The subtracted term in (4.9.8) represents the improvement in estimating xn using
x̂n/n over using x̂n/n−1. Equations (4.93, (4.9.7), and (4.9.8) admit a nice geometrical
interpretation [20]. The two right-hand side terms in εn = cen/n−1 + vn are orthogonal
and can be represented by the orthogonal triangle

where the prediction error en/n−1 has been scaled up by the factor c. Thus, Eq. (4.9.5)
is the statement of the Pythagorean theorem for this triangle. Next, write the equation
en/n = en/n−1 −Gnεn as

en/n−1 = en/n +Gnεn
Because en/n is orthogonal to all the observations inYn and εn is a linear combination

of the same observations, it follows that the two terms in the right-hand side will be
orthogonal. Thus, en/n−1 may be resolved in two orthogonal parts, one being in the
direction of εn. This is represented by the smaller orthogonal triangle in the previous
diagram. Clearly, the length of the side en/n is minimized at right angles at point A. It
follows from the similarity of the two orthogonal triangles that

Gn
√
E[ε2

n]√
E[e2

n/n−1]
= c

√
E[e2

n/n−1]√
E[ε2

n]

which is equivalent to Eq. (4.9.7). Finally, the Pythagorean theorem applied to the smaller
triangle implies E[e2

n/n−1]= E[e2
n/n]+G2

nE[ε2
n], which is equivalent to Eq. (4.9.8).

To obtain a truly recursive scheme, we need next to find a relationship between Pn/n
and the next prediction error Pn+1/n. It is found as follows. From the state model (4.6.6)
and (4.9.2), we have

en+1/n = xn+1 − x̂n+1/n = (axn +wn)−ax̂n/n = aen/n +wn
Because en/n depends only on xn and Yn, it follows that the two terms in the right-

hand side will be uncorrelated. Therefore, E[e2
n+1/n]= a2E[e2

n/n]+E[w2
n], or,

Pn+1/n = a2Pn/n +Q (4.9.9)

The first term corresponds to the propagation of the estimate x̂n/n forward in time
according to the system dynamics; the second term represents the worsening of the
estimate due to the presence of the dynamical noise wn. The Kalman filter algorithm is
now complete. It is summarized below:
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0. Initialize by x̂0/−1 = 0 and P0/−1 = E[x2
0].

1. At time n, x̂n/n−1, Pn/n−1, and the new measurement yn are available.

2. Compute ŷn/n−1 = cx̂n/n−1, εn = yn − ŷn/n−1, and the gain Gn using Eq. (4.9.7).

3. Correct the predicted estimate x̂n/n = x̂n/n−1+Gnεn and compute its mean-square
error Pn/n, using Eq. (4.9.8).

4. Predict the next estimate x̂n+1/n = ax̂n/n, and compute the mean-square predic-
tion error Pn+1/n, using Eq.(4.9.9).

5. Go to the next time instant, n→ n+ 1.

The optimal predictor x̂n/n−1 satisfies the Kalman filtering equation

x̂n+1/n = ax̂n/n = a(x̂n/n−1 +Gnεn)= ax̂n/n−1 + aGn(yn − cx̂n/n−1) , or,

x̂n+1/n = fnx̂n/n−1 +Knyn (4.9.10)

where we defined
Kn = aGn , fn = a− cKn (4.9.11)

These are the time-varying analogs of Eqs. (4.6.17) and (4.6.19). Equations (4.9.8) and
(4.9.9) may be combined into one updating equation for Pn/n−1, known as the discrete
Riccati difference equation

Pn+1/n = a2RPn/n−1

R+ c2Pn/n−1
+Q (4.9.12)

It is the time-varying version of Eq. (4.6.18). We note that in deriving all of the
above results, we did not need to assume that the model parameters {a, c,Q,R} were
constants, independent of time. They can just as well be replaced by time-varying model
parameters:

{an, cn,Qn,Rn}
The asymptotic properties of the Kalman filter depend, of course, on the particular

time variations in the model parameters. In the time-invariant case, with {a, c,Q,R}
constant, we expect the solution of the Riccati equation (4.9.12) to converge, for large
n, to some steady-state value Pn/n−1 → P. In this limit, the Riccati difference equation
(4.9.12) tends to the steady-state algebraic Riccati equation (4.6.18), which determines
the limiting value P. The Kalman filter parameters will converge to the limiting values
fn → f , Kn → K, and Gn → G given by Eq. (4.6.19).

It is possible to solve Eq. (4.9.12) in closed form and explicitly demonstrate these
convergence properties. Using the techniques of [21, 22], we obtain

Pn/n−1 = P+ f2nE0

1+ SnE0
, for n = 0,1,2, . . . , (4.9.13)

where E0 = P0/−1 − P and

Sn = B 1− f2n

1− f2
, B = c2

R+ c2P

We have already mentioned (see Problem 3.7) that the stability of the signal model
and the positivity of the asymptotic solution P imply the minimum phase condition
|f| < 1. Thus, the second term of Eq. (4.9.13) converges to zero exponentially with a
time constant determined by f .
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Example 4.9.1: Determine the closed form solutions of the time-varying Kalman filter for the
state and measurement models:

xn+1 = xn +wn , yn = xn + vn

with Q = 0.5 and R = 1. Thus, a = 1 and c = 1. The Riccati equations are

Pn+1/n = Pn/n−1

1+ Pn/n−1
+ 0.5 , P = P

1+ P + 0.5

The solution of the algebraic Riccati equation is P = 1. This implies that f = aR/(R +
c2P)= 0.5. To illustrate the solution (4.9.13), we take the initial condition to be zero
P0/−1 = 0. We find B = c2/(R+ c2P)= 0.5 and

Sn = 2

3

[
1− (0.5)2n]

Thus,

Pn/n−1 = 1− (0.5)2n

1− 2

3

[
1− (0.5)2n] = 1− (0.5)2n

1+ 2(0.5)2n

The first few values calculated from this formula are

P1/0 = 1

2
, P2/1 = 5

6
, P3/2 = 21

22
, . . .

and quickly converge to P = 1. They may also be obtained by iterating Eq. (4.9.12). ��

4.10 Problems

4.1 Let x = [xna , . . . , xnb]T and y = [yna , . . . , ynb]T be the desired and available signal vectors.
The relationship between x and y is assumed to be linear of the form

y = Cx+ v

whereC represents a linear degradation and v is a vector of zero-mean independent gaussian
samples with a common variance σ2

v . Show that the maximum likelihood (ME) estimation
criterion is in this case equivalent to the following least-squares criterion, based on the
quadratic vector norm:

E = ‖y−Cx‖2 = minimum with respect to x

Show that the resulting estimate is given by

x̂ = (CTC)−1CTy

4.2 Let x̂ = Hy be the optimal linear smoothing estimate of x given by Eq. (4.1.5). It is obtained by
minimizing the mean-square estimation error En = E[e2

n] for each n in the interval [na, nb].
(a) Show that the solution for H also minimizes the error covariance matrix

Ree = E[eeT]

where e is the vector of estimation errors e = [ena , . . . , enb]T .

(b) Show thatH also minimizes every quadratic index of the form, for any positive semi-
definite matrix Q:

E[eTQe]= min

(c) Explain how the minimization of each E[e2
n] can be understood in terms of part (b).
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4.3 Consider the smoothing problem of estimating the signal vector x from the signal vector y.
Assume that x and y are linearly related by

y = Cx+ v

and that v and x are uncorrelated from each other, and that the covariance matrices of x
and v, Rxx and Rvv, are known. Show that the smoothing estimate of x is in this case

x̂ = RxxCT[CRxxCT +Rvv]−1y

4.4 A stationary random signal has autocorrelation function Rxx(k)= σ2
xa|k|, for all k. The

observation signal is yn = xn + vn , where vn is a zero-mean, white noise sequence of
variance σ2

v , uncorrelated from xn.

(a) Determine the optimal FIR Wiener filter of orderM = 1 for estimating xn from yn.

(b) Repeat for the optimal linear predictor of orderM = 2 for predicting xn on the basis
of the past two samples yn−1 and yn−2.

4.5 A stationary random signal x(n) has autocorrelation function Rxx(k)= σ2
xa|k|, for all k.

Consider a time interval [na, nb]. The random signal x(n) is known only at the end-points
of that interval; that is, the only available observations are

y(na)= x(na), y(nb)= x(nb)

Determine the optimal estimate of x(n) based on just these two samples in the form

x̂(n)= h(n,na)y(na)+h(n,nb)y(nb)

for the following values of n: (a) na ≤ n ≤ nb, (b) n ≤ na, (c) n ≥ nb.
4.6 A stationary random signal xn is to be estimated on the basis of the noisy observations

yn = xn + vn

It is given that

Sxx(z)= 1

(1− 0.5z−1)(1− 0.5z)
, Svv(z)= 5, Sxv(z)= 0

(a) Determine the optimal realizable Wiener filter for estimating the signal xn on the
basis of the observations Yn = {yi , i ≤ n}. Write the difference equation of this filter.
Compute the mean-square estimation error.

(b) Determine the optimal realizable Wiener filter for predicting one step into the future;
that is, estimate xn+1 on the basis of Yn.

(c) Cast the results of (a) and (b) in a predictor/corrector Kalman filter form, and show
explicitly that the innovations residual of the observation signal yn is identical to the corre-
sponding whitening sequence εn driving the signal model of yn.

4.7 Repeat the previous problem for the following choice of state and measurement models

xn+1 = xn +wn , yn = xn + vn

where wn and vn have variances Q = 0.5 and R = 1, respectively.

4.8 Consider the state and measurement equations

xn+1 = axn +wn , yn = cxn + vn

as discussed in Section 4.6. For any value of the Kalman gain K, consider the Kalman pre-
dictor/corrector algorithm defined by the equation

x̂n+1/n = ax̂n/n−1 +K(yn − cx̂n/n−1)= f x̂n/n−1 +Kyn (P.1)

where f = a− cK. The stability requirement of this estimation filter requires further that K
be such that |f| < 1.
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(a) Let en/n−1 = xn − x̂n/n−1 be the corresponding estimation error. Assuming that all
signals are stationary, and working with z-transforms, show that the power spectral density
of en/n−1 is given by

See(z)= Q +K2R
(1− fz−1)(1− fz)

(b) Integrating See(z) around the unit circle, show that the mean-square value of the
estimation error is given by

E = E[e2
n/n−1]=

Q +K2R
1− f2

= Q +K2R
1− (a− cK)2

(P.2)

(c) To select the optimal value of the Kalman gain K, differentiate E with respect to K
and set the derivative to zero. Show that the resulting equation for K can be expressed in
the form

K = caP
R+ c2P

where P stands for the minimized value of E; that is, P = Emin.

(d) Inserting this expression for K back into the expression (P.2) for E, show that the
quantity P must satisfy the algebraic Riccati equation

Q = P− a2RP
R+ c2P

Thus, the resulting estimator filter is identical to the optimal one-step prediction filter dis-
cussed in Section 4.6.

4.9 (a) Show that Eq. (P.2) of Problem 4.8 can be derived without using z-transforms, by using
only stationarity, as suggested below: Using the state and measurement model equations and
Eq. (P. l), show that the estimation error en/n−1 satisfies the difference equation

en+1/n = fen/n−1 +wn −Kvn
Then, invoking stationarity, derive Eq. (P.2).

(b) Using similar methods, show that the mean-square estimation error is given by

E[e2
n/n]=

RP
R+ c2P

where en/n = xn − x̂n/n is the estimation error of the optimal filter (4.6.13).

4.10 Consider the general example of Section 4.6. It was shown there that the innovations residual
was the same as the whitening sequence εn driving the signal model of yn

εn = yn − ŷn/n−1 = yn − cx̂n/n−1

Show that it can be written as
εn = cen/n−1 + vn

where en/n−1 = xn − x̂n/n−1 is the prediction error. Then, show that

σ2
ε = E[ε2

n]= R+ c2P

4.11 Computer Experiment. Consider the signal and measurement model defined by Eqs. (4.6.6)
through (4.6.8), with the choices a = 0.9, c = 1, Q = 1 − a2, and R = 1. Generate 1500
samples of the random noises wn and vn. Generate the corresponding signals xn and yn
according to the state and measurement equations. Determine the optimal Wiener filter of
the form (4.6.13) for estimating xn on the basis of yn. Filter the sequence yn through the
Wiener filter to generate the sequence x̂n/n.

(a) On the same graph, plot the desired signal xn and the available noisy version yn for
n ranging over the last 100 values (i.e., n = 1400–1500.)

(b) On the same graph, plot the recovered signal x̂n/n together with the original signal
xn for n ranging over the last 100 values.

(c) Repeat (a) and (b) using a different realization of wn and vn.

(d) Repeat (a), (b), and (c) for the choice a = −0.9.
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4.12 Consider the optimal Wiener filtering problem in its matrix formulation of Section 4.8. Let
e = x − x̂ = x − Hy be the estimation error corresponding to a particular choice of the
lower-triangular matrix H. Minimize the error covariance matrix Ree = E[eeT] with respect
to H subject to the constraint that H be lower-triangular. These constraints are Hni = 0
for n < i. To do this, introduce a set of Lagrange multipliers Λni for n < i, one for each
constraint equation, and incorporate them into an effective performance index

J = E[eeT]+ΛHT +HΛT = min

where the matrix Λ is strictly upper-triangular. Show that this formulation of the minimiza-
tion problem yields exactly the same solution as Eq. (4.8.7).
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5
Linear Prediction

5.1 Pure Prediction and Signal Modeling

In Sections 1.11 and 1.16, we discussed the connection between linear prediction and
signal modeling. Here, we rederive the same results by considering the linear prediction
problem as a special case of the Wiener filtering problem, given by Eq. (4.4.6). Our aim
is to cast the results in a form that will suggest a practical way to solve the prediction
problem and hence also the modeling problem. Consider a stationary signal yn having
a signal model

Syy(z)= σ2
εB(z)B(z−1) (5.1.1)

as guaranteed by the spectral factorization theorem. Let Ryy(k) denote the autocorre-
lation of yn :

Ryy(k)= E[yn+kyn]
The linear prediction problem is to predict the current value yn on the basis of all the

past values Yn−1 = {yi , −∞ < i ≤ n− 1}. If we define the delayed signal y1(n)= yn−1,
then the linear prediction problem is equivalent to the optimal Wiener filtering problem
of estimating yn from the related signal y1(n). The optimal estimation filter H(z) is
given by Eq. (4.4.6 ) , where we must identify xn and yn with yn and y1(n) of the present
notation. Using the filtering equation Y1(z)= z−1Y(z), we find that yn and y1(n) have
the same spectral factor B(z)

Sy1y1(z)= (z−1)(z)Syy(z)= Syy(z)= σ2
εB(z)B(z−1)

and also that
Syy1(z)= Syy(z)z = zσ2

εB(z)B(z−1)

Inserting these into Eq. (4.4.6), we find for the optimal filter H(z)

H(z)= 1

σ2
εB(z)

[Syy1(z)
B(z−1)

]
+
= 1

σ2
εB(z)

[
zσ2

εB(z)B(z−1)
B(z−1)

]
+
, or,

H(z)= 1

B(z)
[
zB(z)

]
+ (5.1.2)

The causal instruction can be removed as follows: Noting that B(z) is a causal and
stable filter, we may expand it in the power series

B(z)= 1+ b1z−1 + b2z−2 + b3z−3 + · · ·
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The causal part of zB(z) is then[
zB(z)

]
+ = [z+ b1 + b2z−1 + b3z−2 + · · · ]+= b1 + b2z−1 + b3z−2 + · · ·
= z(b1z−1 + b2z−2 + b3z−3 + · · · ) = z(B(z)−1

)
The prediction filter H(z) then becomes

H(z)= 1

B(z)
z
(
B(z)−1

) = z[
1− 1

B(z)

]
(5.1.3)

The input to this filter is y1(n) and the output is the prediction ŷn/n−1.

Example 5.1.1: Suppose that yn is generated by driving the all-pole filter

yn = 0.9yn−1 − 0.2yn−2 + εn

by zero-mean white noise εn. Find the best predictor ŷn/n−1. The signal model in this case
is B(z)= 1/(1− 0.9z−1 + 0.2z−2) and Eq. (5.1.3) gives

z−1H(z)= 1− 1

B(z)
= 1− (1− 0.9z−1 + 0.2z−2)= 0.9z−1 − 0.2z−2

The I/O equation for the prediction filter is obtained by

Ŷ(z)= H(z)Y1(z)= z−1H(z)Y(z)= [
0.9z−1 − 0.2z−2

]
Y(z)

and in the time domain
ŷn/n−1 = 0.9yn−1 − 0.2yn−2

Example 5.1.2: Suppose that

Syy(z)= (1− 0.25z−2)(1− 0.25z2)
(1− 0.8z−1)(1− 0.8z)

Determine the best predictor ŷn/n−1. Here, the minimum phase factor is

B(z)= 1− 0.25z−2

1− 0.8z−1

and therefore the prediction filter is

z−1H(z)= 1− 1

B(z)
= 1− 1− 0.8z−1

1− 0.25z−2
= 0.8z−1 − 0.25z−2

1− .25z−2

The I/O equation of this filter is conveniently given recursively by the difference equation

ŷn/n−1 = 0.25ŷn−2/n−3 + 0.8yn−1 − 0.25yn−2 ��

The prediction error
en/n−1 = yn − ŷn/n−1

is identical to the whitening sequence εn driving the signal model (5.1.1) of yn, indeed,

E(z) = Y(z)−Ŷ(z)= Y(z)−H(z)Y1(z)= Y(z)−H(z)z−1Y(z)

= [
1− z−1H(z)

]
Y(z)= 1

B(z)
Y(z)= ε(z)
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Fig. 5.1 Linear Predictor.

Thus, in accordance with the results of Sections 1.11 and 1.16

en/n−1 = yn − ŷn/n−1 = εn (5.1.4)

An overall realization of the linear predictor is shown in Fig. 5.1. The indicated
dividing line separates the linear predictor into the Wiener filtering part and the input
part which provides the proper input signals to the Wiener part. The transfer function
from yn to en/n−1 is the whitening inverse filter

A(z)= 1

B(z)
= 1− z−1H(z)

which is stable and causal by the minimum-phase property of the spectral factorization
(5.1.1). In the z-domain we have

E(z)= ε(z)= A(z)Y(z)

and in the time domain

en/n−1 = εn =
∞∑
m=0

amyn−m = yn + a1yn−1 + a2yn−2 + · · ·

The predicted estimate ŷn/n−1 = yn − en/n−1 is

ŷn/n−1 = −
[
a1yn−1 + a2yn−2 + · · ·

]
These results are identical to Eqs. (1.16.2) and (1.16.3). The relationship noted above

between linear prediction and signal modeling can also be understood in terms of the
gapped-function approach of Section 4.7. Rewriting Eq. (5.1.1) in terms of the prediction-
error filter A(z) we have

Syy(z)= σ2
ε

A(z)A(z−1)
(5.1.5)

from which we obtain

A(z)Syy(z)= σ2
ε

A(z−1)
(5.1.6)

Since we have the filtering equation ε(z)= A(z)Y(z), it follows that

Sεy(z)= A(z)Syy(z)

and in the time domain

Rey(k)= E[εnyn−k]=
∞∑
i=0

aiRyy(k− i) (5.1.7)
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which is recognized as the gapped function (4.7.1). By construction, εn is the orthogonal
complement of yn with respect to the entire past subspace Yn−1 = {yn−k, k = 1,2, . . . },
therefore, εn will be orthogonal to each yn−k for k = 1,2, . . . . These are precisely the
gap conditions. Because the prediction is based on the entire past, the gapped function
develops an infinite right-hand side gap. Thus, Eq. (5.1.7) implies

Rey(k)= E[εnyn−k]=
∞∑
i=0

aiRyy(k− i)= 0 , for all k = 1,2, . . . (5.1.8)

The same result, of course, also follows from the z-domain equation (5.1.6). Both
sides of the equation are stable, but since A(z) is minimum-phase, A(z−1) will be
maximum phase, and therefore it will have a stable but anticausal inverse 1/A(z−1).
Thus, the right-hand side of Eq. (5.1.6) has no strictly causal part. Equating to zero all
the coefficients of positive powers of z−1 results in Eq. (5.1.8).

The value of the gapped function at k = 0 is equal to σ2
ε . Indeed, using the gap

conditions (5.1.8) we find

σ2
ε = E[ε2

n]= E
[
εn(yn + a1yn−1 + a2yn−2 + · · · )

]
= Rεy(0)+a1Rεy(1)+a2Rεy(2)+· · · = Rεy(0)= E[εnyn]

Using Eq. (5.1.7) with k = 0 and the symmetry property Ryy(i)= Ryy(−i), we find

σ2
ε = E[ε2

n]= E[εnyn]= Ryy(0)+a1Ryy(1)+a2Ryy(2)+· · · (5.1.9)

Equations (5.1.8) and (5.1.9) may be combined into one:

∞∑
i=0

aiRyy(k− i)= σ2
εδ(k) , for all k ≥ 0 (5.1.10)

which can be cast in the matrix form:⎡⎢⎢⎢⎢⎢⎢⎢⎣

Ryy(0) Ryy(1) Ryy(2) Ryy(3) · · ·
Ryy(1) Ryy(0) Ryy(1) Ryy(2) · · ·
Ryy(2) Ryy(1) Ryy(0) Ryy(1) · · ·
Ryy(3) Ryy(2) Ryy(1) Ryy(0) · · ·

...
...

...
...

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
a1

a2

a3

...

⎤⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

σ2
ε

0
0
0
...

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (5.1.11)

These equations are known as the normal equations of linear prediction [1–12]. They
provide the solution to both the signal modeling and the linear prediction problems.
They determine the model parameters {a1, a2, . . . ;σ2

ε} of the signal yn directly in terms
of the experimentally accessible quantities Ryy(k). To render them computationally
manageable, the infinite matrix equation (5.1.11) must be reduced to a finite one, and
furthermore, the quantities Ryy(k) must be estimated from actual data samples of yn.
We discuss these matters next.

5.2 Autoregressive Models

In general, the number of prediction coefficients {a1, a2, . . . } is infinite since the pre-
dictor is based on the infinite past. However, there is an important exception to this;
namely, when the process yn is autoregressive. In this case, the signal model B(z) is an
all-pole filter of the type

B(z)= 1

A(z)
= 1

1+ a1z−1 + a2z−2 + · · · + apz−p (5.2.1)
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which implies that the prediction filter is a polynomial

A(z)= 1+ a1z−1 + a2z−2 + · · · + apz−p (5.2.2)

The signal generator for yn is the following difference equation, driven by the un-
correlated sequence εn :

yn + a1yn−1 + a2yn−2 + · · · + apyn−p = εn (5.2.3)

and the optimal prediction of yn is simply given by:

ŷn/n−1 = −
[
a1yn−1 + a2yn−2 + · · · + apyn−p

]
(5.2.4)

In this case, the best prediction of yn depends only on the past p samples {yn−1,
yn−2, . . . , yn−p}. The infinite set of equations (5.1.10) or (5.1.11) are still satisfied even
though only the first p+ 1 coefficients {1, a1, a2, . . . , ap} are nonzero.

The (p + 1)×(p + 1) portion of Eq. (5.1.11) is sufficient to determine the (p + 1)
model parameters {a1, a2, . . . , ap;σ2

ε} :⎡⎢⎢⎢⎢⎢⎢⎢⎣

Ryy(0) Ryy(1) Ryy(2) · · · Ryy(p)
Ryy(1) Ryy(0) Ryy(1) · · · Ryy(p− 1)
Ryy(2) Ryy(1) Ryy(0) · · · Ryy(p− 2)

...
...

...
. . .

...
Ryy(p) Ryy(p− 1) Ryy(p− 2) · · · Ryy(0)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
a1

a2

...
ap

⎤⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

σ2
ε

0
0
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (5.2.5)

Such equations may be solved efficiently by Levinson’s algorithm, which requires
O(p2) operations and O(p) storage locations to obtain the ais instead of O(p3) and
O(p2), respectively, that would be required if the inverse of the autocorrelation matrix
Ryy were to be computed. The finite set of model parameters {a1, a2, . . . , ap;σ2

ε} de-
termines the signal model of yn completely. Setting z = ejω into Eq. 5.1.5) we find a
simple parametric representation of the power spectrum of the AR signal yn

Syy(ω)= σ2
ε∣∣A(ω)∣∣2 =

σ2
ε∣∣1+ a1e−jω + a2e−2jω + · · · + ape−jωp

∣∣2 (5.2.6)

In practice, the normal equations (5.2.5) provide a means of determining approximate
estimates for the model parameters {a1, a2, . . . , ap;σ2

ε} . Typically, a block of length N
of recorded data is available

y0, y1, y2, . . . , yN−1

There are many different methods of extracting reasonable estimates of the model
parameters using this block of data. We mention: (1) the autocorrelation or Yule-Walker
method, (2) the covariance method, and (3) Burg’s method. There are also some varia-
tions of these methods. The first method, the Yule-Walker method, is perhaps the most
obvious and straightforward one. In the normal equations (5.2.5), one simply replaces
the ensemble autocorrelations Ryy(k) by the corresponding sample autocorrelations
computed from the given block of data; that is,

R̂yy(k)= 1

N

N−1−k∑
n=0

yn+kyn , for 0 ≤ k ≤ p (5.2.7)

where only the first p + 1 lags are needed in Eq. (5.2.5). We must have, of course,
p ≤ N−1. As discussed in Section 1.11, the resulting estimates of the model parameters
{â1, â2, . . . , âp; σ̂2

ε} may be used now in a number of ways; examples include obtaining
an estimate of the power spectrum of the sequence yn

Ŝyy(ω)= σ̂2
ε∣∣Â(ω)∣∣2 =

σ̂2
ε∣∣1+ â1e−jω + â2e−2jω + · · · + âpe−jωp

∣∣2
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or, representing the block ofN samples yn in terms of a few (i.e., p+1) filter parameters.
To synthesize the original samples one would generate white noise εn of variance σ̂2

ε
and send it through the generator filter whose coefficients are the estimated values; that
is, the filter

B̂(z)= 1

Â(z)
= 1

1+ â1z−1 + â2z−2 + · · · + âpz−p
The Yule-Walker analysis procedure, also referred to as the autocorrelation method

of linear prediction [3], is summarized in Fig. 5.2.

Fig. 5.2 Yule-Walker Analysis Algorithm.

5.3 Linear Prediction and the Levinson Recursion

In the last section, we saw that if the signal being predicted is autoregressive of order
p, then the optimal linear predictor collapses to a pth order predictor. The infinite di-
mensional Wiener filtering problem collapses to a finite dimensional one. A geometrical
way to understand this property is to say that the projection of yn on the subspace
spanned by the entire past {yn−i , 1 ≤ i < ∞} is the same as the projection of yn onto
the subspace spanned only by the past p samples; namely, {yn−i , 1 ≤ i ≤ p}. This is a
consequence of the difference equation (5.2.3) generating yn.

If the process yn is not autoregressive, these two projections will be different. For
any given p, the projection of yn onto the past p samples will still provide the best linear
prediction of yn that can be made on the basis of these p samples. As p increases, more
and more past information is taken into account, and we expect the prediction of yn
to become better and better in the sense of yielding a smaller mean-square prediction
error.

In this section, we consider the finite-past prediction problem and discuss its effi-
cient solution via the Levinson recursion [1–12]. For sufficiently large values of p, it
may be considered to be an adequate approximation to the full prediction problem and
hence also to the modeling problem.

Consider a stationary time series yn with autocorrelation functionR(k)= E[yn+kyn].
For any given p, we seek the best linear predictor of the form

ŷn = −
[
a1yn−1 + a2yn−2 + · · · + apyn−p

]
(5.3.1)

The p prediction coefficients {a1, a2, . . . , ap} are chosen to minimize the mean-
square prediction error

E = E[e2
n] (5.3.2)

where en is the prediction error

en = yn − ŷn = yn + a1yn−1 + a2yn−2 + · · · + apyn−p (5.3.3)

Differentiating Eq. (5.3.2) with respect to each coefficient ai, i = 1,2, . . . , p, yields
the orthogonality equations

E[enyn−i]= 0 , for i = 1,2, . . . , p (5.3.4)
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which express the fact that the optimal predictor ŷn is the projection onto the span of
the past p samples; that is, {yn−i , i = 1,2, . . . , p}. Inserting the expression (5.3.3) for
en into Eq. (5.3.4), we obtain p linear equations for the coefficients

p∑
j=0

ajE[yn−jyn−i]=
p∑
j=0

R(i− j)aj = 0 , for i = 1,2, . . . , p (5.3.5)

Using the conditions (5.3.4) we also find for the minimized value of

σ2
e = E = E[e2

n]= E[enyn]=
p∑
j=0

R(j)aj (5.3.6)

Equations (5.3.5) and (5.3.6) can be combined into the (p+1)×(p+1)matrix equation⎡⎢⎢⎢⎢⎢⎢⎢⎣

R(0) R(1) R(2) · · · R(p)
R(1) R(0) R(1) · · · R(p− 1)
R(2) R(1) R(0) · · · R(p− 2)

...
...

...
. . .

...
R(p) R(p− 1) R(p− 2) · · · R(0)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
a1

a2

...
ap

⎤⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

σ2
e

0
0
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (5.3.7)

which is identical to Eq. (5.2.5) for the autoregressive case. It is also the truncated version
of the infinite matrix equation (5.1.11) for the full prediction problem.

Instead of solving the normal equations (5.3.7) directly, we would like to embed this
problem into a whole class of similar problems; namely, those of determining the best
linear predictors of orders p = 1, p = 2, p = 3, . . . , and so on. This approach will lead to
Levinson’s algorithm and to the so-called lattice realizations of linear prediction filters.
Pictorially this class of problems is illustrated below

where [1, a11], [1, a21, a22], [1, a31, a32, a33], . . . , represent the best predictors of or-
ders p = 1,2,3, . . . , respectively. It was necessary to attach an extra index indicating the
order of the predictor. Levinson’s algorithm is an iterative procedure that constructs
the next predictor from the previous one. In the process, all optimal predictors of lower
orders are also computed. Consider the predictors of orders p and p+ 1, below

yn−p−1 yn−p · · · yn−2 yn−1 yn
app · · · ap2 ap1 1

ap+1,p+1 ap+1,p · · · ap+1,2 ap+1,1 1

ep(n)= yn + ap1yn−1 + ap2yn−2 + · · · + appyn−p
ep+1(n)= yn + ap+1,1yn−1 + ap+1,2yn−2 + · · · + ap+1,p+1yn−p−1
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Our objective is to construct the latter in terms of the former. We will use the ap-
proach of Robinson and Treitel, based on gapped functions [9]. Suppose that the best
predictor of order p, [1, ap1, ap2, . . . , app], has already been constructed. The corre-
sponding gapped function is

gp(k)= E[ep(n)yn−k]= E
⎡⎣⎛⎝ p∑

i=0

apiyn−i

⎞⎠yn−k
⎤⎦ = p∑

i=0

apiR(k− i) (5.3.8)

It has a gap of length p as shown , that is,

gp(k)= 0 , for 1 ≤ k ≤ p

These gap conditions are the same as the orthogonality equations (5.3.4). Using
gp(k) we now construct a new gapped function gp+1(k) of gap p+ 1. To do this, first
we reflect gp(k) about the origin; that is, gp(k)→ gp(−k). The reflected function has
a gap of length p but at negatives times. A delay of (p+ 1) time units will realign this
gap with the original gap. This follows because if 1 ≤ k ≤ p, then 1 ≤ p + 1 − k ≤ p.
The reflected-delayed function will be gp(p+1−k). These operations are shown in the
following figure

Since both gp(k) and gp(p+1−k) have exactly the same gap, it follows that so will
any linear combination of them. Therefore,

gp+1(k)= gp(k)−γp+1gp(p+ 1− k) (5.3.9)

will have a gap of length at least p. We now select the parameter γp+1 so that gp+1(k)
acquires an extra gap point; its gap is now of length p+ 1. The extra gap condition is

gp+1(p+ 1)= gp(p+ 1)−γp+1gp(0)= 0

which may be solved for

γp+1 = gp(p+ 1)
gp(0)

Evaluating Eq. (5.3.8) at k = p + 1, and using the fact that the value of the gapped
function at k = 0 is the minimized value of the mean-squared error, that is,

Ep = E
[
e2
p(n)

] = E[ep(n)yn]= gp(0) (5.3.10)

we finally find

γp+1 = ΔpEp (5.3.11)
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where we set Δp = gp(p+ 1)

Δp =
p∑
i=0

apiR(p+ 1− i)= [
R(p+ 1),R(p),R(p− 1), . . . , R(1)

]
⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
ap1

ap2

...
app

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (5.3.12)

The coefficients γp+1 are called reflection, PARCOR, or Schur coefficients. This ter-
minology will become clear later. Evaluating Eq. (5.3.9) at k = 0 and using gp(p+ 1)=
γp+1gp(0), we also find a recursion for the quantity Ep+1 = gp+1(0)

Ep+1 = gp+1(0)= gp(0)−γp+1gp(p+ 1)= gp(0)−γp+1 · γp+1gp(0) , or,

Ep+1 = (1− γ2
p+1)Ep (5.3.13)

This represents the minimum value of the mean-square prediction error E
[
e2
p+1(n)

]
for the predictor of order p + 1. Since both Ep and Ep+1 are nonnegative, it follows
that the factor (1 − γ2

p+1) will be nonnegative and less than one. It represents the
improvement in the prediction obtained by using a predictor of order p+1 instead of a
predictor of order p. It also follows that γp+1 has magnitude less than one, |γp+1| ≤ 1.

To find the new prediction coefficients, ap+1,i, we use the fact that the gapped func-
tions are equal to the convolution of the corresponding prediction-error filters with the
autocorrelation function of yn :

gp(k)=
p∑
i=0

apiR(k− i) ⇒ Gp(z)= Ap(z)Syy(z)

gp+1(k)=
p+1∑
i=0

ap+1,iR(k− i) ⇒ Gp+1(z)= Ap+1(z)Syy(z)

where Syy(z) represents the power spectral density of yn. Taking z-transforms of both
sides of Eq. (5.3.9), we find

Gp+1(z)= Gp(z)−γp+1z−(p+1)Gp(z−1) , or,

Ap+1(z)Syy(z)= Ap(z)Syy(z)−γp+1z−(p+1)Ap(z−1)Syy(z−1)

where we used the fact that the reflected gapped function gp(−k) has z-transform
Gp(z−1), and therefore the delayed (by p + 1) as well as reflected gapped function
gp(p+1−k) has z-transform z−(p+1)Gp(z−1). Since Syy(z)= Syy(z−1) because of the
symmetry relations R(k)= R(−k), it follows that Syy(z) is a common factor in all the
terms. Therefore, we obtain a relationship between the new best prediction-error filter
Ap+1(z)and the old one Ap(z)

Ap+1(z)= Ap(z)−γp+1z−(p+1)Ap(z−1) (Levinson recursion) (5.3.14)

Taking inverse z-transforms, we find⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
ap+1,1
ap+1,2

...
ap+1,p
ap+1,p+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
ap1

ap2

...
app
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
− γp+1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
app
ap,p−1

...
ap1

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5.3.15)
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which can also be written as

ap+1,i = api − γp+1ap,p+1−i , for 1 ≤ i ≤ p
ap+1,p+1 = −γp+1

Introducing the reverse polynomial ARp(z)= z−pAp(z−1), we may write Eq. (5.3.14) as

Ap+1(z)= Ap(z)−γp+1z−1ARp(z) (5.3.16)

Taking the reverse of both sides, we find

Ap+1(z−1)= Ap(z−1)−γp+1zp+1Ap(z)

ARp+1(z)= z−(p+1)Ap+1(z−1)= z−(p+1)Ap(z−1)−γp+1Ap(z) , or,

ARp+1(z)= z−1ARp(z)−γp+1Ap(z) (5.3.17)

Equation (5.3.17) is, in a sense, redundant, but it will prove convenient to think of the
Levinson recursion as a recursion on both the forward, Ap(z), and the reverse, ARp(z),
polynomials. Equations (5.3.16) and Eq. (5.3.17) may be combined into a 2×2 matrix
recursion equation, referred to as the forward Levinson recursion:[

Ap+1(z)
ARp+1(z)

]
=

[
1 −γp+1z−1

−γp+1 z−1

][
Ap(z)
ARp(z)

]
(forward recursion) (5.3.18)

The recursion is initialized at p = 0 by setting

A0(z)= AR0 (z)= 1 and E0 = R(0)= E[y2
n] (5.3.19)

which corresponds to no prediction at all. We summarize the computational steps of
the Levinson algorithm:

1. Initialize at p = 0 using Eq. (5.3.19).

2. At stage p, the filter Ap(z) and error Ep are available.

3. Using Eq. (5.3.11), compute γp+1.

4. Using Eq. (5.3.14) or Eq. (5.3.18), determine the new polynomial Ap+1(z).
5. Using Eq. (5.3.13), update the mean-square prediction error to Ep+1.

6. Go to stage p+ 1.

The iteration may be continued until the final desired order is reached. The depen-
dence on the autocorrelation R(k) of the signal yn is entered through Eq. (5.3.11) and
E0 = R(0). To reach stage p, only the p+1 autocorrelation lags {R(0),R(1), . . . , R(p)}
are required. At the pth stage, the iteration already has provided all the prediction fil-
ters of lower order, and all the previous reflection coefficients. Thus, an alternative
parametrization of the pth order predictor is in terms of the sequence of reflection
coefficients {γ1, γ2, . . . , γp} and the prediction error Ep

{Ep, ap1, ap2, . . . , app} � {Ep,γ1, γ2, . . . , γp}

One may pass from one parameter set to another. And both sets are equivalent
to the autocorrelation set {R(0),R(1), . . . , R(p)}. The alternative parametrization of
the autocorrelation function R(k) of a stationary random sequence in terms of the
equivalent set of reflection coefficients is a general result [13, 14], and has also been
extended to the multichannel case [15].

If the process yn is autoregressive of order p, then as soon as the Levinson recursion
reaches this order, it will provide the autoregressive coefficients {a1, a2, . . . , ap} which
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are also the best prediction coefficients for the full (i.e., based on the infinite past)
prediction problem. Further continuation of the Levinson recursion will produce nothing
new—all prediction coefficients (and all reflection coefficients) of order higher than p
will be zero, so that Aq(z)= Ap(z) for all q > p.

The four subroutines lev, frwlev, bkwlev, and rlev (see Appendix B) allow the
passage from one parameter set to another. The subroutine lev is an implementa-
tion of the computational sequence outlined above. The input to the subroutine is
the final desired order of the predictor, say M, and the vector of autocorrelation lags
{R(0),R(1), ..., R(M)}. Its output is the lower-triangular matrix L whose rows are the
reverse of all the lower order prediction-error filters. For example, forM = 4 the matrix
L would be

L =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0 0
a11 1 0 0 0
a22 a21 1 0 0
a33 a32 a31 1 0
a44 a43 a42 a41 1

⎤⎥⎥⎥⎥⎥⎥⎦ (5.3.20)

The first column of L contains the negatives of all the reflection coefficients. This fol-
lows from the Levinson recursion (5.3.14) which implies that the negative of the highest
coefficient of the pth prediction-error filter is the pth reflection coefficient; namely,

γp = −app , p = 1,2, . . . ,M (5.3.21)

This choice for L is justified below and in Section 5.9. The subroutine lev also
produces the vector of mean-square prediction errors {E0, E1, . . . , EM} according to the
recursion (5.3.13).

The subroutine frwlev is an implementation of the forward Levinson recursion
(5.3.18) or (5.3.15). Its input is the set of reflection coefficients {γ1, γ2, . . . , γM} and
its output is the set of all prediction-error filters up to order M, that is, Ap(z), p =
1,2, . . . ,M. Again, this output is arranged into the matrix L.

The subroutine bkwlev is the inverse operation to frwlev. Its input is the vector of
prediction-error filter coefficients [1, aM1, aM2, . . . , aMM] of the final order M, and its
output is the matrix L containing all the lower order prediction-error filters. The set of
reflection coefficients are extracted from the first column of L. This subroutine is based
on the inverse of the matrix equation (5.3.18). Shifting p down by one unit, we write
Eq. (5.3.18) as [

Ap(z)
ARp(z)

]
=

[
1 −γpz−1

−γp z−1

][
Ap−1(z)
ARp−1(z)

]
(5.3.22)

Its inverse is[
Ap−1(z)
ARp−1(z)

]
= 1

1− γ2
p

[
1 γp
γpz z

][
Ap(z)
ARp(z)

]
(backward recursion) (5.3.23)

At each stage p, start withAp(z) and extract γp = −app from the highest coefficient
of Ap(z). Then, use Eq. (5.3.23) to obtain the polynomial Ap−1(z). The iteration begins
at the given orderM and proceeds downwards to p =M − 1,M − 2, . . . ,1,0.

The subroutine rlev generates the set of autocorrelation lags {R(0),R(1), ..., R(M)}
from the knowledge of the final prediction-error filter AM(z) and final prediction error
EM. It calls bkwlev to generate all the lower order prediction-error filters, and then
it reconstructs the autocorrelation lags using the gapped function condition gp(p)=∑p
i=0 apiR(p− i)= 0, which may be solved for R(p) in terns of R(p− i), i = 1,2, . . . , p,

as follows:

R(p)= −
p∑
i=1

apiR(p− i) , p = 1,2, . . . ,M (5.3.24)
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For example, the first few iterations of Eq. (5.3.24) will be:

R(1) = −[
a11R(0)

]
R(2) = −[

a21R(1)+a22R(0)
]

R(3) = −[
a31R(2)+a32R(1)+a33R(0)

]
To get this recursion started, the value of R(0) may be obtained from Eq. (5.3.13).

Using Eq. (5.3.13) repeatedly, and E0 = R(0) we find

EM = (1− γ2
1)(1− γ2

2)· · · (1− γ2
M)R(0) (5.3.25)

Since the reflection coefficients are already known (from the call to bklev) and EM
is given, this equation provides the right value for R(0).

The routine schur, based on the Schur algorithm and discussed in Section 5.10, is
an alternative to lev. The logical interconnection of these routines is shown below.

Example 5.3.1: Given the autocorrelation lags

{R(0),R(1),R(2),R(3),R(4)} = {128,−64,80,−88,89}

Find all the prediction-error filters Ap(z) up to order four, the four reflection coefficients,
and the corresponding mean-square prediction errors. Below, we simply state the results
obtained using the subroutine lev:

A1(z) = 1+ 0.5z−1

A2(z) = 1+ 0.25z−1 − 0.5z−2

A3(z) = 1− 0.375z−2 + 0.5z−3

A4(z) = 1− 0.25z−1 − 0.1875z−2 + 0.5z−3 − 0.5z−4

The reflection coefficients are the negatives of the highest coefficients; thus,

{γ1, γ2, γ3, γ4} = {−0.5, 0.5, −0.5, 0.5}

The vector of mean-squared prediction errors is given by

{E0, E1, E2, E3, E4} = {128, 96, 72, 54, 40.5}

Sending the above vector of reflection coefficients through the subroutine frwlev would
generate the above set of polynomials. Sending the coefficients of A4(z) through bkwlev
would generate the same set of polynomials. Sending the coefficients of A4(z) and E4 =
40.5 through rlev would recover the original autocorrelation lagsR(k), k = 0,1,2,3,4. ��

The Yule-Walker method (see Section 5.2) can be used to extract the linear prediction
parameters from a given set of signal samples. From a given length-N block of data

y0, y1, y2, . . . , yN−1
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compute the sample autocorrelations {R̂(0), R̂(1), . . . , R̂(M)} using, for example, Eq.
(5.2.7), and send them through the Levinson recursion. The subroutine yw (see Appendix
B) implements the Yule-Walker method. The input to the subroutine is the data vector
of samples {y0, y1, . . . , yN−1} and the desired final orderM of the predictor. Its output
is the set of all prediction-error filters up to orderM, arranged in the matrix L, and the
vector of mean-squared prediction errors up to orderM, that is, {E0, E1, . . . , EM}
Example 5.3.2: Given the signal samples

{y0, y1, y2, y3, y4} = {1,1,1,1,1}

determine all the prediction-error filters up to order four. Using the fourth order predictor,
predict the sixth value in the above sequence, i.e., the value of y5.

The sample autocorrelation of the above signal is easily computed using the methods of
Chapter 1. We find (ignoring the 1/N normalization factor):

{R̂(0), R̂(1), R̂(2), R̂(3), {R̂(4)} = {5,4,3,2,1}

Sending these lags through the subroutine lev we find the prediction-error filters:

A1(z) = 1− 0.8z−1

A2(z) = 1− 0.889z−1 + 0.111z−2

A3(z) = 1− 0.875z−1 + 0.125z−3

A4(z) = 1− 0.857z−1 + 0.143z−4

Therefore, the fourth order prediction of yn given by Eq. (5.3.1) is

ŷn = 0.857yn−1 − 0.143yn−4

which gives ŷ5 = 0.857− 0.143 = 0.714. ��

The results of this section can also be derived from those of Section 1.7 by invoking
stationarity and making the proper identification of the various quantities, as we did
in Example 2.6.2. The data vector y and the subvectors ȳ and ỹ are identified with
y = yp+1(n), ȳ = yp(n), and ỹ = yp(n− 1), where

yp+1(n)=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

yn
yn−1

...
yn−p
yn−p−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , yp(n)=

⎡⎢⎢⎢⎢⎢⎣
yn
yn−1

...
yn−p

⎤⎥⎥⎥⎥⎥⎦ , yp(n− 1)=

⎡⎢⎢⎢⎢⎢⎣
yn−1

yn−2

...
yn−p−1

⎤⎥⎥⎥⎥⎥⎦ (5.3.26)

It follows from stationarity that the autocorrelation matrices of these vectors are
independent of the absolute time instant n; therefore, we write

Rp = E[yp(n)yp(n)T]= E[yp(n− 1)yp(n− 1)T], Rp+1 = E[yp+1(n)yp+1(n)T]

It is easily verified that Rp is the order-p autocorrelation matrix defined in Eq. (5.3.7)
and that the order-(p+1) autocorrelation matrixRp+1 admits the block decompositions

Rp+1 =

⎡⎢⎢⎢⎢⎢⎣
R(0) R(1) · · · R(p+ 1)
R(1)

... Rp
R(p+ 1)

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣

R(p+ 1)

Rp
...

R(1)
R(p+ 1) · · · R(1) R(0)

⎤⎥⎥⎥⎥⎥⎦
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It follows, in the notation of Section 1.7, that R̄ = R̃ = Rp and ρa = ρb = R(0), and

ra =

⎡⎢⎢⎣
R(1)

...
R(p+ 1)

⎤⎥⎥⎦ , rb =

⎡⎢⎢⎣
R(p+ 1)

...
R(1)

⎤⎥⎥⎦
Thus, ra and rb are the reverse of each other. As in Example 2.6.2, it follows that the

backward predictors are the reverse of the forward ones. Therefore, Eq. (5.3.14) is the
same as Eq. (1.7.40), with the identifications

a = ap+1 , b = bp+1 , ā = ã = ap , b̄ = b̃ = bp

where

ap+1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
ap+1,1

...
ap+1,p
ap+1,p+1

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , bp+1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ap+1,p+1

ap+1,p
...

ap+1,1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ap =

⎡⎢⎢⎢⎢⎢⎣
1
ap1

...
app

⎤⎥⎥⎥⎥⎥⎦ , bp =

⎡⎢⎢⎢⎢⎢⎣
app

...
ap1

1

⎤⎥⎥⎥⎥⎥⎦
Symbolically, bp = aRp , bp+1 = aRp+1. We have Ēa = Ẽb = Ep and γa = γb = γp+1.

Thus, Eq. (5.3.15) may be written as

ap+1 =
[

ap
0

]
− γp+1

[
0
bp

]
=

[
ap
0

]
− γp+1

[
0
aRp

]
(5.3.27)

The normal Eqs. (5.3.7) can be written for orders p and p + 1 in the compact form of
Eqs. (1.7.38) and (1.7.12)

Rpap = Epup , Rp+1ap+1 = Ep+1up+1 , up =
[

1
0

]
, up+1 =

[
up
0

]
(5.3.28)

Recognizing that Eq. (5.3.12) can be written asΔp = aTp rb, it follows that the reflection
coefficient equation (5.3.11) is the same as (1.7.42). The rows of the matrix L defined by
Eq. (5.3.20) are the reverse of the forward predictors; that is, the backward predictors
of successive orders. Thus, L is the same as that defined in Eq. (1.7.13). The rows of the
matrix U defined in Eq. (1.7.30) are the forward predictors, with the first row being the
predictor of highest order. For example,

U =

⎡⎢⎢⎢⎢⎢⎢⎣
1 a41 a42 a43 a44

0 1 a31 a32 a33

0 0 1 a21 a22

0 0 0 1 a11

0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
Comparing L with U, we note that one is obtained from the other by reversing its

rows and then its columns; formally, U = JLJ, where J is the corresponding reversing
matrix.

5.4 Levinson’s Algorithm in Matrix Form

In this section, we illustrate the mechanics of the Levinson recursion—cast in matrix
form—by explicitly carrying out a few of the recursions given in Eq. (5.3.15). The objec-
tive of such recursions is to solve normal equations of the type⎡⎢⎢⎢⎣

R0 R1 R2 R3

R1 R0 R1 R2

R2 R1 R0 R1

R3 R2 R1 R0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

1
a31

a32

a33

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
E3

0
0
0

⎤⎥⎥⎥⎦
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for the unknowns {E3, a31, a32, a33}. The corresponding prediction-error filter is

A3(z)= 1+ a31z−1 + a32z−2 + a33z−3

and the minimum value of the prediction error is E3. The solution is obtained in an
iterative manner, by solving a family of similar matrix equations of lower dimensionality.
Starting at the upper left corner,

the Rmatrices are successively enlarged until the desired dimension is reached (4×4 in
this example). Therefore, one successively solves the matrix equations

[R0][1]= [E0] ,
[
R0 R1

R1 R0

][
1
a11

]
=

[
E1

0

]
,

⎡⎢⎣R0 R1 R2

R1 R0 R1

R2 R1 R0

⎤⎥⎦
⎡⎢⎣ 1
a21

a22

⎤⎥⎦ =
⎡⎢⎣ E2

0
0

⎤⎥⎦
The solution of each problem is obtained in terms of the solution of the previous

one. In this manner, the final solution is gradually built up. In the process, one also
finds all the lower order prediction-error filters.

The iteration is based on two key properties of the autocorrelation matrix: first,
the autocorrelation matrix of a given size contains as subblocks all the lower order
autocorrelation matrices; and second, the autocorrelation matrix is reflection invariant.
That is, it remains invariant under interchange of its columns and then its rows. This
interchanging operation is equivalent to the similarity transformation by the “reversing”
matrix J having 1’s along its anti-diagonal, e.g.,

J =

⎡⎢⎢⎢⎣
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎤⎥⎥⎥⎦ (5.4.1)

The invariance property means that the autocorrelation matrix commutes with the
matrix J

JRJ−1 = R (5.4.2)

This property immediately implies that if the matrix equation is satisfied:⎡⎢⎢⎢⎣
R0 R1 R2 R3

R1 R0 R1 R2

R2 R1 R0 R1

R3 R2 R1 R0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
a0

a1

a2

a3

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
b0

b1

b2

b3

⎤⎥⎥⎥⎦
then the following equation is also satisfied:⎡⎢⎢⎢⎣

R0 R1 R2 R3

R1 R0 R1 R2

R2 R1 R0 R1

R3 R2 R1 R0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
a3

a2

a1

a0

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
b3

b2

b1

b0

⎤⎥⎥⎥⎦
The steps of the Levinson algorithm are explicitly as follows:
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Step 0

Solve R0 ·1 = E0. This defines E0. Then enlarge to the next size by padding a zero, that
is, [

R0 R1

R1 R0

][
1
0

]
=

[
E0

Δ0

]
, this defines Δ0. Then, also

[
R0 R1

R1 R0

][
0
1

]
=

[
Δ0

E0

]
, by reversal invariance

These are the preliminaries to Step 1.

Step 1

We wish to solve [
R0 R1

R1 R0

][
1
a11

]
=

[
E1

0

]
(5.4.3)

Try an expression of the form[
1
a11

]
=

[
1
0

]
− γ1

[
0
1

]

Acting on both sides by

[
R0 R1

R1 R0

]
and using the results of Step 0, we obtain

[
R0 R1

R1 R0

][
1
a11

]
=

[
R0 R1

R1 R0

][
1
0

]
− γ1

[
R0 R1

R1 R0

][
0
1

]
, or,

[
E1

0

]
=

[
E0

Δ0

]
− γ1

[
Δ0

E0

]
, or,

E1 = E0 − γ1Δ0 , 0 = Δ0 − γ1E0 , or

γ1 = Δ0

E0
, E1 = E0 − γ1Δ0 = (1− γ2

1)E0 , where Δ0 = R1

These define γ1 and E1. As a preliminary to Step 2, enlarge Eq. (5.4.3) to the next
size by padding a zero⎡⎢⎣R0 R1 R2

R1 R0 R1

R2 R1 R0

⎤⎥⎦
⎡⎢⎣ 1
a11

0

⎤⎥⎦ =
⎡⎢⎣ E1

0
Δ1

⎤⎥⎦ , this defines Δ1. Then, also

⎡⎢⎣R0 R1 R2

R1 R0 R1

R2 R1 R0

⎤⎥⎦
⎡⎢⎣ 0
a11

1

⎤⎥⎦ =
⎡⎢⎣Δ1

0
E1

⎤⎥⎦ , by reversal invariance

Step 2

We wish to solve ⎡⎢⎣R0 R1 R2

R1 R0 R1

R2 R1 R0

⎤⎥⎦
⎡⎢⎣ 1
a21

a22

⎤⎥⎦ =
⎡⎢⎣ E2

0
0

⎤⎥⎦ (5.4.4)

Try an expression of the form:⎡⎢⎣ 1
a21

a22

⎤⎥⎦ =
⎡⎢⎣ 1
a11

0

⎤⎥⎦− γ2

⎡⎢⎣ 0
a11

1

⎤⎥⎦ , with γ2 to be determined
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Acting on both sides by the 3×3 autocorrelation matrix and using Step 1, we find⎡⎢⎣ E2

0
0

⎤⎥⎦ =
⎡⎢⎣ E1

0
Δ1

⎤⎥⎦− γ2

⎡⎢⎣Δ1

0
E1

⎤⎥⎦ , or,

E2 = E1 − γ2Δ1 , 0 = Δ1 − γ2E1 , or

γ2 = Δ1

E1
, E2 = (1− γ2

1)E1 , where Δ1 =
[
R2, R1

][
1
a11

]
These define γ2 and E2. As a preliminary to Step 3, enlarge Eq. (5.4.4) to the next

size by padding a zero⎡⎢⎢⎢⎣
R0 R1 R2 R3

R1 R0 R1 R2

R2 R1 R0 R1

R3 R2 R1 R0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

1
a21

a22

0

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
E2

0
0
Δ2

⎤⎥⎥⎥⎦ , this defines Δ2. Then, also

⎡⎢⎢⎢⎣
R0 R1 R2 R3

R1 R0 R1 R2

R2 R1 R0 R1

R3 R2 R1 R0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

0
a22

a21

1

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
Δ2

0
0
E2

⎤⎥⎥⎥⎦ , by reversal invariance

Step 3

We wish to solve ⎡⎢⎢⎢⎣
R0 R1 R2 R3

R1 R0 R1 R2

R2 R1 R0 R1

R3 R2 R1 R0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

1
a31

a32

a33

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
E3

0
0
0

⎤⎥⎥⎥⎦ (5.4.5)

Try an expression of the form:⎡⎢⎢⎢⎣
1
a31

a32

a33

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

1
a21

a22

0

⎤⎥⎥⎥⎦− γ3

⎡⎢⎢⎢⎣
0
a22

a21

1

⎤⎥⎥⎥⎦ , with γ3 to be determined

Acting on both sides by the 4×4 autocorrelation matrix and using Step 2, we obtain⎡⎢⎢⎢⎣
E3

0
0
0

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
E2

0
0
Δ2

⎤⎥⎥⎥⎦− γ3

⎡⎢⎢⎢⎣
Δ2

0
0
E2

⎤⎥⎥⎥⎦ , or,

E3 = E2 − γ3Δ2 , 0 = Δ2 − γ3E2 , or

γ3 = Δ2

E2
, E3 = (1− γ2

3)E2 , where Δ2 =
[
R3, R2, R1

]⎡⎢⎣ 1
a21

a22

⎤⎥⎦
Clearly, the procedure can be continued to higher and higher orders, as required

in each problem. Note that at each step, we used the order-updating Eqs. (1.7.40) in
conjunction with Eq. (1.7.47).



164 5. Linear Prediction

5.5 Autocorrelation Sequence Extensions

In this section, we discuss the problem of extending an autocorrelation function and
the related issues of singular autocorrelation matrices. The equivalence between an
autocorrelation function and the set of reflection coefficients provides a convenient and
systematic way to (a) test whether a given finite set of numbers are the autocorrelation
lags of a stationary signal and (b) extend a given finite set of autocorrelation lags to
arbitrary lengths while preserving the autocorrelation property.

For a finite set of numbers {R(0),R(1), . . . , R(p)} to be the lags of an autocorre-
lation function, it is necessary and sufficient that all reflection coefficients, extracted
from this set via the Levinson recursion, have magnitude less than one; that is, |γi| < 1,
for i = 1,2, . . . , p, and also that R(0)> 0. These conditions are equivalent to the pos-
itive definiteness of the autocorrelation matrix Rp. The proof follows from the fact
that the positivity of Rp is equivalent to the conditions on the prediction errors Ei > 0,
for i = 1,2, . . . , p. In turn, these conditions are equivalent to E0 = R(0)> 0 and and,
through Eq. (5.3.13), to the reflection coefficients having magnitude less than one.

The problem of extending a finite set {R(0),R(1), . . . , R(p)} of autocorrelation lags
is to find a numberR(p+1) such that the extended set {R(0),R(1), . . . , R(p),R(p+1)}
is still an autocorrelation sequence. This can be done by parametrizing R(p + 1) in
terms of the next reflection coefficient γp+1. Solving Eq. (5.3.12) for R(p+1) and using
Eq. (5.3.11), we obtain

R(p+ 1)= γp+1Ep −
[
ap1R(p)+ap2R(p− 1)+· · · + appR(1)

]
(5.5.1)

Any number γp+1 in the range−1 < γp+1 < 1 will give rise to an acceptable value for
R(p+1) . The choiceγp+1 = 0 is special and corresponds to the so-called autoregressive
or maximum entropy extension of the autocorrelation function (see Problem 5.16). If this
choice is repeated to infinity, we will obtain the set of reflection coefficients

{γ1, γ2, . . . , γp,0,0, . . . }

It follows from the Levinson recursion that all prediction-error filters of order greater
than p will remain equal to the pth filter,Ap(z)= Ap+1(z)= Ap+2(z)= · · · . Therefore,
the corresponding whitening filter will beA(z)= Ap(z), that is, an autoregressive model
of order p. With the exception of the above autoregressive extension that leads to an
all-pole signal model, the extendibility conditions |γp+i| < 1, i ≥ 1, do not necessarily
guarantee that the resulting signal model will be a rational (pole-zero) model. See [16-20]
for some recent results on this subject.

Example 5.5.1: Consider the three numbers {R(0),R(1),R(2)} = {8,4,−1}. The Levinson
recursion gives {γ1, γ2} = {0.5,−0.5} and {E1, E2} = {6, 4.5}. Thus, the above numbers
qualify to be autocorrelation lags. The corresponding prediction-error filters are

a1 =
[

1
a11

]
=

[
1
−0.5

]
, a2 =

⎡⎢⎣ 1
a21

a22

⎤⎥⎦ =
⎡⎢⎣ 1
−0.75

0.5

⎤⎥⎦
The next lag in this sequence can be chosen according to Eq. (5.5.1)

R(3)= γ3E2 −
[
a21R(2)+a22R(1)

] = 4.5γ3 − 2.75

where γ3 is any number in the interval −1 < γ3 < 1 . The resulting possible values of
R(3) are plotted below versus γ3 . In particular, the autoregressive extension corresponds
to γ3 = 0, which gives R(3)= −2.75. ��
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The end-points, γp+1 = ±1, of the allowed interval (−1,1) correspond to the two
possible extreme values of R(p+ 1):

R(p+ 1)= ±Ep −
[
ap1R(p)+ap2R(p− 1)+· · · + appR(1)

]
In this case, the corresponding prediction error vanishes Ep+1 = (1− γ2

p+1)Ep = 0.
This makes the resulting order-(p+ 1) autocorrelation matrix Rp+1 singular. The pre-
diction filter becomes either the symmetric (if γp+1 = −1) or antisymmetric (if γp+1 = 1)
combination

ap+1 =
[

ap
0

]
+

[
0
aRp

]
, Ap+1(z)= Ap(z)+z−1ARp(z) , or,

ap+1 =
[

ap
0

]
−

[
0
aRp

]
, Ap+1(z)= Ap(z)−z−1ARp(z)

In either case, it can be shown that the zeros of the polynomial Ap+1(z) lie on
the unit circle, and that the prediction filter ap+1 becomes an eigenvector of Rp+1 with
zero eigenvalue; namely, Rp+1ap+1 = 0. This follows from the normal Eqs. (5.3.28)
Rp+1ap+1 = Ep+1up+1 and Ep+1 = 0.

Example 5.5.2: Consider the extended autocorrelation sequence of Example 5.5.1 defined by
the singular choice γ3 = −1. Then, R(3)= −4.5 − 2.75 = −7.25. The corresponding
order-3 prediction-error filter is computed using the order-2 predictor and the Levinson
recursion

a3 =

⎡⎢⎢⎢⎣
1
a31

a32

a33

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

1
−0.75

0.5
0

⎤⎥⎥⎥⎦− γ3

⎡⎢⎢⎢⎣
0

0.5
−0.75

1

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

1
−0.25
−0.25

1

⎤⎥⎥⎥⎦
It is symmetric about its middle. Its zeros, computed as the solutions of (1 − 0.25z−1 −
0.25z−2 + z−3)= (1+ z−1)(1− 1.25z−1 + z−2)= 0 are

z = −1 , z = 5± j√39

8

and lie on the unit circle. Finally, we verify that a3 is an eigenvector of R3 with zero
eigenvalue:

R3a3 =

⎡⎢⎢⎢⎣
8 4 −1 −7.25
4 8 4 −1
−1 4 8 4
−7.25 −1 4 8

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

1
−0.25
−0.25

1

⎤⎥⎥⎥⎦ = 0 ��

Singular autocorrelation matrices, and the associated symmetric or antisymmetric
prediction filters with zeros on the unit circle, find application in the method of line
spectrum pairs (LSP) of speech analysis [21]. They are also intimately related to the
eigenvector methods of spectrum estimation, such as Pisarenko’s method of harmonic
retrieval, discussed in Section 6.2. This connection arises from the property that singular



166 5. Linear Prediction

autocorrelation matrices (with nonsingular principal minors) admit a representation as
a sum of sinusoidal components [22], the frequencies of which are given precisely by
the zeros, on the unit circle, of the corresponding prediction filter. This sinusoidal
representation is equivalent to the eigen-decomposition of the matrix. The prediction
filter can, alternatively, be computed as the eigenvector belonging to zero eigenvalue.
The proof of these results can be derived as a limiting case; namely, the noise-free case,
of the more general eigenvector methods that deal with sinusoids in noise. A direct
proof is suggested in Problem 6.10.

Example 5.5.3: Consider the autocorrelation matrix R =
⎡⎢⎣ 2 1 −1

1 2 1
−1 1 2

⎤⎥⎦. It is easily verified

that the corresponding autocorrelation lags R(k) admit the sinusoidal representation

R(k)= 2 cos(ω1k)= ejω1k + e−jω1k , for k = 0,1,2

where ω1 = π/3. Sending these lags through the Levinson recursion, we find {γ1, γ2} =
{0.5,−1} and {E1, E2} = {1.5, 0}. Thus, R singular. Its eigenvalues are {0, 3, 3}. The
corresponding prediction filters are a1 = [1,−0.5]T and a2 = [1,−1,1]T . It is easily
verified that a2 is an eigenvector ofRwith zero eigenvalue, i.e.,Ra2 = 0. The corresponding
eigenfilter A2(z)= 1 − z−1 + z−2, is symmetric about its middle and has zeros on the
unit circle coinciding with the sinusoids present in R, namely, z = e±jω1 . The other two
eigenvectors of R are

c =
⎡⎢⎣ 1

cosω1

cos 2ω1

⎤⎥⎦ =
⎡⎢⎣ 1

0.5
−0.5

⎤⎥⎦ , d =
⎡⎢⎣ 0

sinω1

sin 2ω1

⎤⎥⎦ =
⎡⎢⎣ 0√

3/2√
3/2

⎤⎥⎦
both belonging to eigenvalue λ = 3. Their norm is ‖c‖ = ‖d‖ = √3/2. The three eigen-
vectors a2, c,d are mutually orthogonal. It is easily verified that the matrix R may be rep-
resented in the form R = 2ccT + 2ddT , which, after normalizing c and d to unit norm, is
recognized as the eigendecomposition of R, We can also express R in terms of its complex
sinusoidal components in the form R = ss† + s∗sT , where

s = c+ jd =
⎡⎢⎣ 1
ejω1

e2jω1

⎤⎥⎦ , s† = s∗T = [
1, e−jω1 , e−2jω1

]

Example 5.5.4: Similarly, one can verify that the four autocorrelation lags {8, 4, −1, −7.25} of
the singular matrix of Example 5.5.2 can be represented in the sinusoidal form

R(k)= P1ejω1k + P2ejω2k + P3ejω3k , for k = 0,1,2,3

where P1 = 8/13, P2 = P3 = 96/13, and ωi correspond to the zeros of the prediction
filter a3, namely,

ejω1 = −1 , ejω2 = 5+ j√39

8
, ejω3 = 5− j√39

8
, so that,ω3 = −ω2

The matrix itself has the sinusoidal representation

R = P1s1s†1 + P2s2s†2 + P3s3s†3 , where si =

⎡⎢⎢⎢⎣
1
ejωi
e2jωi

e3jωi

⎤⎥⎥⎥⎦
Had we chosen the value γ3 = 1 in Example 5.5.2, we would have found the extended lag
R(3)= 1.75 and the antisymmetric order-3 prediction-error filter a3 = [1,−1.25,1.25,−1]T ,
whose zeros are on the unit circle:

ejω1 = 1 , ejω2 = 1+ j√63

8
, ejω3 = 1− j√63

8
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with R(k) admitting the sinusoidal representation

R(k)= P1 + 2P2 cos(ω2k)= [8, 4, −1, 1.75] , for k = 0,1,2,3

where P1 = 24/7 and P2 = 16/7. ��

5.6 Split Levinson Algorithm

The main computational burden of Levinson’s algorithm is 2pmultiplications per stage,
arising from the p multiplications in Eq. (5.3.15) and in the computation of the inner
product (5.3.12). Thus, forM stages, the algorithm requires

2
M∑
p=1

p =M(M + 1)

or,O(M2)multiplications. This represents a factor ofM savings over solving the normal
equations (5.3.7) by direct matrix inversion, requiring O(M3) operations. The savings
can be substantial considering that in speech processing M = 10–15, and in seismic
processingM = 100–200. Progress in VLSI hardware has motivated the development of
efficient parallel implementations of Levinson’s algorithm and its variants [23–42]. With
M parallel processors, the complexity of the algorithm is typically reduced by another
factor ofM to O(M) or O(M logM) operations.

An interesting recent development is the realization that Levinson’s algorithm has
some inherent redundancy, which can be exploited to derive more efficient versions
of the algorithm allowing an additional 50% reduction in computational complexity.
These versions were motivated by a new stability test for linear prediction polynomials
by Bistritz [43], and have been termed Split Levinson or Immitance-Domain Levinson
algorithms [44–51]. They are based on efficient three-term recurrence relations for the
symmetrized or antisymmetrized prediction polynomials. Following [44], we define the
order-p symmetric polynomial

Fp(z)= Ap−1(z)+z−1ARp−1(z) , fp =
[

ap−1

0

]
+

[
0

aRp−1

]
(5.6.1)

The coefficient vector fp is symmetric about its middle; that is, fp0 = fpp = 1 and
fpi = ap−1,i+ap−1,p−i = fp,p−i, for i = 1,2, . . . , p− 1. Thus, only half of the vector fp, is
needed to specify it completely. Using the backward recursion (5.3.22) to writeAp−1(z)
in terms of Ap(z), we obtain the alternative expression

Fp = 1

1− γ2
p

[
(Ap + γpARp)+z−1(γpzAp + zARp)

] = 1

1− γp [Ap +A
R
p] , or,

(1− γp)Fp(z)= Ap(z)+ARp(z) , (1− γp)fp = ap + aRp (5.6.2)

The polynomial Ap(z) and its reverse may be recovered from the knowledge of the
symmetric polynomials Fp(z). Writing Eq. (5.6.1) for order p+ 1, we obtain Fp+1(z)=
Ap(z)+z−1ARp(z). This equation, together with Eq. (5.6.2), may be solved for Ap(z)
and ARp(z), yielding

Ap(z)= Fp+1(z)−(1− γp)z−1Fp(z)
1− z−1

, ARp(z)=
(1− γp)Fp(z)−Fp+1(z)

1− z−1
(5.6.3)

Inserting these expressions into the forward Levinson recursion (5.3.16) and can-
celing the common factor 1/(1 − z−1), we obtain a three-term recurrence relation for
Fp(z):

Fp+2 − (1− γp+1)z−1Fp+1 =
[
Fp+1 − (1− γp)z−1Fp

]− γp+1z−1[(1− γp)Fp − Fp+1
]
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or,
Fp+2(z)= (1+ z−1)Fp+1(z)−αp+1z−1Fp(z) (5.6.4)

where αp+1 = (1+ γp+1)(1− γp). In block diagram form

Because Fp(z) has order p and is delayed by z−1, the coefficient form of (5.6.4) is

fp+2 =
[

fp+1

0

]
+

[
0

fp+1

]
−αp+1

⎡⎢⎣ 0
fp
0

⎤⎥⎦ (5.6.5)

The recursion is initialized by F0(z)= 2 and F1(z)= 1 + z−1. Because of the sym-
metric nature of the polynomial Fp(z) only half of its coefficients need be updated by
Eqs. (5.6.4) or (5.6.5). To complete the recursion, we need an efficient way to update the
coefficientsαp+1. Taking the dot product of both sides of Eq. (5.6.2) with the row vector[
R(0),R(1), . . . , R(p)

]
, we obtain[

R(0), . . . , R(p)
]
ap +

[
R(0), . . . , R(p)

]
aRp = (1− γp)

[
R(0), . . . , R(p)

]
fp

The first term is recognized as the gapped function gp(0)= Ep, and the second term
as gp(p)= 0. Dividing by 1− γp and denoting τp = Ep/(1− γp), we obtain

τp =
[
R(0),R(1), . . . , R(p)

]
fp =

p∑
i=0

R(i)fpi (5.6.6)

Because of the symmetric nature of fp the quantity τp can be computed using only
half of the terms in the above inner product. For example, if p is odd, the above sum
may be folded to half its terms

τp =
(p−1)/2∑
i=0

[
R(i)+R(p− i)]fpi

Because Eqs. (5.6.5) and (5.6.6) can be folded in half, the total number of multipli-
cations per stage will be 2(p/2)= p, as compared with 2p for the classical Levinson
algorithm. This is how the 50% reduction in computational complexity arises. The re-
cursion is completed by noting that αp+1 can be computed in terms of τp by

αp+1 = τp+1

τp
(5.6.7)

This follows from Eq. (5.3.13),

τp+1

τp
= Ep+1

1− γp+1

1− γp
Ep

= 1− γ2
p+1

1− γp+1
(1− γp)= (1+ γp+1)(1− γp)= αp+1

A summary of the algorithm, which also includes a recursive computation of the
reflection coefficients, is as follows:

1. Initialize with τ0 = E0 = R(0), γ0 = 0, f0 = [2], f1 = [1,1]T.
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2. At stage p, the quantities τp,γp, fp, fp+1 are available.

3. Compute τp+1 from Eq. (5.6.6), using only half the terms in the sum.

4. Compute αp+1 from Eq. (5.6.7), and solve for γp+1 = −1+αp+1/(1− γp).
5. Compute fp+2 from Eq. (5.6.5), using half of the coefficients.

6. Go to stage p+ 1.

After the final desired order is reached, the linear prediction polynomial can be
recovered from Eq. (5.6.3), which can be written recursively as

api = ap,i−1 + fp+1.i − (1− γp)fp,i−1 , i = 1,2, . . . , p (5.6.8)

with ap0 = 1, or vectorially,[
ap
0

]
=

[
0
ap

]
+ fp+1 − (1− γp)

[
0
fp

]
(5.6.9)

Using the three-term recurrence (5.6.5), we may replace fp+1 in terms of fp and fp−1,
and rewrite Eq. (5.6.9) as

[
ap
0

]
=

[
0
ap

]
+

[
fp
0

]
+ γp

[
0
fp

]
−αp

⎡⎢⎣ 0
fp−1

0

⎤⎥⎦ (5.6.10)

and in the z-domain

Ap(z)= z−1Ap(z)+(1+ γpz−1)Fp(z)−αpz−1Fp−1(z) (5.6.11)

Example 5.6.1: We rederive the results of Example 5.3.1 using this algorithm, showing explicitly
the computational savings. Initialize with τ0 = R(0)= 128, f0 = [2], f1 = [1,1]T . Using
(5.6.6), we compute

τ1 =
[
R(0),R(1)

]
f1 =

[
R(0)+R(1)]f10 = 128− 64 = 64

Thus, α1 = τ1/τ0 = 64/128 = 0.5 and γ1 = −1+α1 = −0.5. Using Eq. (5.6.5) we find

f2 =
[

f1

0

]
+

[
0
f1

]
−α1

⎡⎢⎣ 0
f0

0

⎤⎥⎦ =
⎡⎢⎣ 1

1
0

⎤⎥⎦+
⎡⎢⎣ 0

1
1

⎤⎥⎦− 0.5

⎡⎢⎣ 0
2
0

⎤⎥⎦ =
⎡⎢⎣ 1

1
1

⎤⎥⎦
and compute τ2

τ2 =
[
R(0),R(1),R(2)

]
f2 =

[
R(0)+R(2)]f20 +R(1)f21 = 144

Thus, α2 = τ2/τ1 = 144/64 = 2.25 and γ2 = −1 +α2/(1 − γ1)= −1 + 2.25/1.5 = 0.5.
Next, compute f3 and τ3

f3 =
[

f2

0

]
+

[
0
f2

]
−α2

⎡⎢⎣ 0
f1

0

⎤⎥⎦ =
⎡⎢⎢⎢⎣

1
1
1
0

⎤⎥⎥⎥⎦+
⎡⎢⎢⎢⎣

0
1
1
1

⎤⎥⎥⎥⎦− 2.25

⎡⎢⎢⎢⎣
0
1
1
0

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

1
−0.25
−0.25

1

⎤⎥⎥⎥⎦
τ3 =

[
R(0),R(1),R(2),R(3)

]
f3 =

[
R(0)+R(3)]f30 +

[
R(1)+R(2)]f31 = 36

which gives α3 = τ3/τ2 = 36/144 = 0.25 and γ3 = −1 +α3/(1 − γ2)= −0.5. Next, we
compute f4 and τ4

f4 =
[

f3

0

]
+

[
0
f3

]
−α3

⎡⎢⎣ 0
f2

0

⎤⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣

1
−0.25
−0.25

1
0

⎤⎥⎥⎥⎥⎥⎥⎦+
⎡⎢⎢⎢⎢⎢⎢⎣

0
1

−0.25
−0.25

1

⎤⎥⎥⎥⎥⎥⎥⎦− 0.25

⎡⎢⎢⎢⎢⎢⎢⎣
0
1
1
1
0

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣

1
0.5
−0.75

0.5
1

⎤⎥⎥⎥⎥⎥⎥⎦
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τ4 =
[
R(0),R(1),R(2),R(3),R(4)

]
f4

= [
R(0)+R(4)]f40 +

[
R(1)+R(3)]f41 +R(2)f42 = 81

which gives α4 = τ4/τ3 = 81/36 = 2.25 and γ4 = −1 + α4/(1 − γ3)= 0.5. The final
prediction filter a4 can be computed using Eq. (5.6.9) or (5.6.10). To avoid computing f5

we use Eq. (5.6.10), which gives⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
a41

a42

a43

a44

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
a41

a42

a43

a44

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0.5
−0.75

0.5
1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ 0.5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1

0.5
−0.75

0.5
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
− 2.25

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1

−0.25
−0.25

1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
with solution a4 = [1, −0.25, −0.1875, 0.5, −0.5]T . ��

5.7 Analysis and Synthesis Lattice Filters

The Levinson recursion, expressed in the 2×2 matrix form of Eq. (5.3.18) forms the basis
of the so-called lattice, or ladder, realizations of the prediction-error filters and their
inverses [3,6]. Remembering that the prediction-error sequence ep(n) is the convolution
of the prediction-error filter [1, ap1, ap2, . . . , app] with the original data sequence yn,
that is,

e+p (n)= yn + ap1yn−1 + ap2yn−2 + · · · + appyn−p (5.7.1)

we find in the z-domain
E+p (z)= Ap(z)Y(z) (5.7.2)

where we changed the notation slightly and denoted ep(n) by e+p (n). At this point,
it proves convenient to introduce the backward prediction-error sequence, defined in
terms of the reverse of the prediction-error filter, as follows:

E−p (z) = ARp(z)Y(z) (5.7.3)

e−p (n) = yn−p + ap1yn−p+1 + ap2yn−p+2 + · · · + appyn (5.7.4)

where ARp(z) is the reverse of Ap(z), namely,

ARp(z)= z−pAp(z−1)= app + ap,p−1z−1 + ap,p−2z−2 + · · · + ap1z−(p−1) + z−p

The signal sequence e−p (n)may be interpreted as the postdiction error in postdicting
the value of yn−p on the basis of the future p samples {yn−p+1, yn−p+2, . . . , yn−1, yn},
as shown below

Actually, the above choice of postdiction coefficients is the optimal one that mini-
mizes the mean-square postdiction error

E[e−p (n)2]= min (5.7.5)
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This is easily shown by inserting Eq. (5.7.4) into (5.7.5) and using stationarity

E[e−p (n)2] = E
⎡⎢⎣
⎛⎝ p∑
m=0

apmyn−p+m

⎞⎠2
⎤⎥⎦ = p∑

m,k=0

apmE[yn−p+myn−p+k]apk

=
p∑

m,k=0

apmR(m− k)apk = E[e+p (n)2]

which shows that the forward and the backward prediction error criteria are the same,
thus, having the same solution for the optimal coefficients. We can write Eqs. (5.7.1) and
(5.7.4) vectorially

e+p (n)= [1, ap1, . . . , app]

⎡⎢⎢⎢⎢⎢⎣
yn
yn−1

...
yn−p

⎤⎥⎥⎥⎥⎥⎦ = aTpyp(n) (5.7.6a)

e−p (n)= [app, ap,p−1, . . . ,1]

⎡⎢⎢⎢⎢⎢⎣
yn
yn−1

...
yn−p

⎤⎥⎥⎥⎥⎥⎦ = aRTp yp(n)= bTpyp(n) (5.7.6b)

They are recognized as the forward and backward prediction errors ea and eb of
Eq. (1.7.9). Multiplying both sides of the Levinson recursion (5.3.18) by Y(z), we cast it
in the equivalent form in terms of the forward and backward prediction-error sequences:[

E+p+1(z)
E−p+1(z)

]
=

[
1 −γp+1z−1

−γp+1 z−1

][
E+p (z)
E−p (z)

]
(5.7.7)

and in the time domain

e+p+1(n) = e+p (n)−γp+1e−p (n− 1)

e−p+1(n) = e−p (n− 1)−γp+1e+p (n)
(5.7.8)

and in block diagram form

These recursions are initialized at p = 0 by

E±0 (z)= A0(z)Y(z)= Y(z) and e±0 (n)= yn (5.7.9)

Eqs. (5.7.8) are identical to (1.7.50), with the identifications ea → e+p+1(n), ēa →
e+p (n), eb → e−p+1(n), ẽb → e−p (n− 1) the last following from Eq. (5.3.26).

The lattice realization of the prediction-error filter is based on the recursion (5.7.8).
Starting at p = 0, the output of the pth stage of (5.7.8) becomes the input of the (p+1)th
stage, up to the final desired order p =M. This is depicted in Fig. 5.3.

At each time instant n the numbers held in the M delay registers of the lattice can
be taken as the internal state of the lattice. The subroutine lattice (see Appendix B) is
an implementation of Fig. 5.3. At each instant n, the routine takes two overall inputs
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Fig. 5.3 Analysis lattice filter.

e±0 (n), makes M calls to the routine section that implements the single lattice section
(5.7.8), produces the two overall outputs e±M(n), and updates the internal state of the
lattice in preparation for the next call. By allowing the reflection coefficients to change
between calls, the routine can also be used in adaptive lattice filters.

Equations (5.7.2) and (5.7.3) imply that the transfer function from the input yn to the
output e+M(n) is the desired prediction-error filter AM(z), whereas the transfer func-
tion from yn to e−M(n) is the reversed filter ARM(z). The lattice realization is therefore
equivalent to the direct-form realization

e+M(n)= yn + aM1yn−1 + aM2yn−2 + · · ·aMMyn−M

realized directly in terms of the prediction coefficients. It is depicted below

The synthesis filter 1/AM(z) can also be realized in a lattice form. The input to
the synthesis filter is the prediction error sequence e+M(n) and its output is the original
sequence yn :

Its direct-form realization is:

For the lattice realization, since yn corresponds to e+0 (n), we must write Eq. (5.7.8) in
an order-decreasing form, starting at e+M(n) and ending with e+0 (n)= yn. Rearranging
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the terms of the first of Eqs. (5.7.8), we have

e+p (n) = e+p+1(n)+γp+1e−p (n− 1)

e−p+1(n) = e−p (n− 1)−γp+1e+p (n)
(5.7.10)

which can be realized as shown below:

Note the difference in signs in the upper and lower adders. Putting together the
stages from p =M to p = 0, we obtain the synthesis lattice filter shown in Fig. 5.4.

Fig. 5.4 Synthesis lattice filter.

Lattice structures based on the split Levinson algorithm can also be developed [46, 47].
They are obtained by cascading the block diagram realizations of Eq. (5.6.4) for different
values of αp. The output signals from each section are defined by

ep(n)=
p∑
i=0

fpiyn−i , Ep(z)= Fp(z)Y(z)

Multiplying both sides of Eq. (5.6.1) by Y(z) we obtain the time-domain expression

ep(n)= e+p−1(n)+e−p−1(n− 1)

Similarly, multiplying both sides of Eq. (5.6.4) by Y(z) we obtain the recursions

ep+2(n)= ep+1(n)+ep+1(n− 1)−αpep(n− 1)

They are initialized by e0(n)= 2yn and e1(n)= yn + yn−1. Putting together the
various sections we obtain the lattice-type realization

The forward prediction error may be recovered from Eq. (5.6.3) or (5.6.11) by multi-
plying both sides with Y(z); for example, using Eq. (5.6.11) we find

e+p (n)= e+p−1(n)+ep(n)+γpep(n)−αpep−1(n− 1)
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5.8 Alternative Proof of the Minimum-Phase Property

The synthesis filter 1/AM(z) must be stable and causal, which requires all theM zeros
of the prediction-error filter AM(z) to lie inside the unit circle on the complex z-plane.
We have already presented a proof of this fact which was based on the property that
the coefficients of AM(z) minimized the mean-squared prediction error E[e+M(n)2].
Here, we present an alternative proof based on the Levinson recursion and the fact that
all reflection coefficients γp have magnitude less than one [6,11]. From the definition
(5.7.4), it follows that

e−p (n− 1)= yn−p−1 + ap1yn−p + ap2yn−p+1 + · · · + appyn−1 (5.8.1)

This quantity represents the estimation error of postdicting yn−p−1 on the basis of the
p future samples {yn−p, yn−p+1, . . . , yn−1}. Another way to say this is that the linear
combination of these p samples is the projection of yn−p−1 onto the subspace of random
variables spanned by {yn−p, yn−p+1, . . . , yn−1}; that is,

e−p (n− 1)= yn−p−1 − (projection of yn−p−1 onto {yn−p, yn−p+1, . . . , yn−1}) (5.8.2)

On the other hand, e+p (n) given in Eq. (5.7.1) is the estimation error of yn based on
the same set of samples. Therefore,

e+p (n)= yn − (projection of yn onto {yn−p, yn−p+1, . . . , yn−1}) (5.8.3)

The samples {yn−p, yn−p+1, . . . , yn−1} are the intermediate set of samples between yn−p−1

and yn as shown below:

Therefore, according to the discussion in Section 1.6, the PARCOR coefficient be-
tween yn−p−1 and yn with the effect of intermediate samples removed is given by

PARCOR = E
[
e+p (n)e−p (n− 1)

]
E
[
e−p (n− 1)2

]
This is precisely the reflection coefficient γp+1 of Eq. (5.3.11). Indeed, using Eq. (5.8.1)
and the gap conditions, gp(k)= 0, k = 1,2, . . . , p, we find

E
[
e+p (n)e−p (n− 1)

] = E[
e+p (n)(yn−p−1 + ap1yn−p + ap2yn−p+1 + · · · + appyn−1)

]
= gp(p+ 1)+ap1gp(p)+ap2gp(p− 1)+· · ·appgp(1)
= gp(p+ 1)

Similarly, invoking stationarity and Eq. (5.7.5),

E
[
e−p (n− 1)2] = E[

e−p (n)2] = E[
e+p (n)2] = gp(0)

Thus, the reflection coefficient γp+1 is really a PARCOR coefficient:

γp+1 =
E
[
e+p (n)e−p (n− 1)

]
E
[
e−p (n− 1)2

] = E
[
e+p (n)e−p (n− 1)

]√
E
[
e−p (n− 1)2

]
E
[
e+p (n)2

] (5.8.4)

Using the Schwarz inequality with respect to the inner product E[uv], that is,∣∣E[uv]∣∣2 ≤ E[u2]E[v2]
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then Eq. (5.8.4) implies that γp+1 will have magnitude less than one:

|γp+1| ≤ 1 , for each p = 0,1, . . . (5.8.5)

To prove the minimum-phase property of AM(z) we must show that all of its M
zeros are inside the unit circle. We will do this by induction. Let Zp and Np denote
the number of zeros and poles of Ap(z) that lie inside the unit circle. Levinson’s re-
cursion, Eq. (5.3.13), expresses Ap+1(z) as the sum of Ap(z) and a correction term
F(z)= −γp+1z−1ARp(z), that is,

Ap+1(z)= Ap(z)+F(z)

Using the inequality (5.8.5) and the fact that Ap(z) has the same magnitude spectrum
as ARp(z), we find the inequality∣∣F(z)∣∣ = ∣∣−γp+1z−1ARp(z)

∣∣ = ∣∣γp+1Ap(z)
∣∣ ≤ ∣∣Ap(z)∣∣

for z = ejω on the unit circle. Then, the argument principle and Rouche’s theorem imply
that the addition of the function F(z) will not affect the difference Np − Zp of poles
and zeros contained inside the unit circle. Thus,

Np+1 − Zp+1 = Np − Zp
Since the only pole of Ap(z) is the multiple pole of order p at the origin arising from
the term z−p, it follows that Np = p. Therefore,

(p+ 1)−Zp+1 = p− Zp , or,

Zp+1 = Zp + 1

Starting at p = 0 with A0(z)= 1, we have Z0 = 0. It follows that

Zp = p

which states that all the p zeros of the polynomial Ap(z) lie inside the unit circle.
Another way to state this result is: “A necessary and sufficient condition for a poly-

nomialAM(z) to have all of itsM zeros strictly inside the unit circle is that all reflection
coefficients {γ1, γ2, . . . , γM} resulting from AM(z) via the backward recursion (5.3.21)
have magnitude strictly less than one.” This is essentially equivalent to the well-known
Schur-Cohn test of stability [52–56]. The subroutine bkwlev can be used in this regard
to obtain the sequence of reflection coefficients. The Bistritz test [43], mentioned in
Section 5.6, is an alternative stability test.

Example 5.8.1: Test the minimum phase property of the polynomials

(a) A(z)= 1− 2.60z−1 + 2.55z−2 − 2.80z−3 + 0.50z−4

(b) A(z)= 1− 1.40z−1 + 1.47z−2 − 1.30z−3 + 0.50z−4

Sending the coefficients of each through the subroutine bkwlev, we find the set of reflec-
tion coefficients

(a) {0.4,−0.5,2.0,−0.5}
(b) {0.4,−0.5,0.8,−0.5}

Since among (a) there is one reflection coefficient of magnitude greater than one, case (a)
will not be minimum phase, whereas case (b) is. ��
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5.9 Orthogonality of Backward Prediction Errors—Cholesky

Factorization

Another interesting structural property of the lattice realizations is that, in a certain
sense, the backward prediction errors e−p (n) are orthogonal to each other [3,6]. To see
this, consider the caseM = 3, and form the matrix product⎡⎢⎢⎢⎣

R0 R1 R2 R3

R1 R0 R1 R2

R2 R1 R0 R1

R3 R2 R1 R0

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

R

⎡⎢⎢⎢⎣
1 a11 a22 a33

0 1 a21 a32

0 0 1 a31

0 0 0 1

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

LT

=

⎡⎢⎢⎢⎣
E0 0 0 0
∗ E1 0 0
∗ ∗ E2 0
∗ ∗ ∗ E3

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

L1

Because the normal equations (written upside down) are satisfied by each prediction-
error filter, the right-hand side will be a lower-triangular matrix. The “don’t care” entries
have been denoted by ∗s. Multiply from the left by L to get

LRLT = LL1 =

⎡⎢⎢⎢⎣
E0 0 0 0
∗ E1 0 0
∗ ∗ E2 0
∗ ∗ ∗ E3

⎤⎥⎥⎥⎦
Since L is by definition lower-triangular, the right-hand side will still be lower tri-

angular. But the left-hand side is symmetric. Thus, so is the right-hand side and as a
result it must be diagonal. We have shown that

LRLT = D = diag{E0, E1, E2, E3} (5.9.1)

or, written explicitly⎡⎢⎢⎢⎣
1 0 0 0
a11 1 0 0
a22 a21 1 0
a33 a32 a31 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
R0 R1 R2 R3

R1 R0 R1 R2

R2 R1 R0 R1

R3 R2 R1 R0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

1 a11 a22 a33

0 1 a21 a32

0 0 1 a31

0 0 0 1

⎤⎥⎥⎥⎦=
⎡⎢⎢⎢⎣
E0 0 0 0
0 E1 0 0
0 0 E2 0
0 0 0 E3

⎤⎥⎥⎥⎦
This is identical to Eq. (1.7.17). The pqth element of this matrix equation is then

bTpRbq = δpqEp (5.9.2)

where bp and bq denote the pth and qth columns of LT. These are recognized as the
backward prediction-error filters of orders p and q. Eq. (5.9.2) implies then the orthog-
onality of the backward prediction-error filters with respect to an inner product xTRy.

The backward prediction errors e−p (n) can be expressed in terms of the bps and the
vector of samples y(n)= [yn, yn−1, yn−2, yn−3]T, as follows:

e−0 (n)= [1, 0, 0, 0]y(n)= bT0 y(n)= yn
e−1 (n)= [a11, 1, 0, 0]y(n)= bT1 y(n)= a11yn + yn−1

e−2 (n)= [a22, a21, 1, 0]y(n)= bT2 y(n)= a22yn + a21yn−1 + yn−2

e−3 (n)= [a33, a32, a31,1]y(n)= bT3 y(n)= a33yn + a32yn−1 + a31yn−2 + yn−3

(5.9.3)

which can be rearranged into the vector form

e−(n)=

⎡⎢⎢⎢⎣
e−0 (n)
e−1 (n)
e−2 (n)
e−3 (n)

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

1 0 0 0
a11 1 0 0
a22 a21 1 0
a33 a32 a31 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
yn
yn−1

yn−2

yn−3

⎤⎥⎥⎥⎦ = Ly(n) (5.9.4)
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It is identical to Eq. (1.7.15). Using Eq. (5.9.1), it follows now that the covariance
matrix of e−(n) is diagonal; indeed, since R = E[y(n)y(n)T],

Re−e− = E[e−(n)e−(n)T]= LRLT = D (5.9.5)

which can also be expressed component-wise as the zero-lag cross-correlation

Re−p e−q (0)= E
[
e−p (n)e−q (n)

] = δpqEp (5.9.6)

Thus, at each time instant n, the backward prediction errors e−p (n) are mutually
uncorrelated (orthogonal) with each other. The orthogonality conditions (5.9.6) and the
lower-triangular nature of L render the transformation (5.9.4) equivalent to the Gram-
Schmidt orthogonalization of the data vector y(n)= [yn, yn−1, yn−2, yn−3]T. Equation
(5.9.1), written as

R = L−1DL−T

corresponds to an LU Cholesky factorization of the covariance matrix R.
Since the backward errors e−p (n), p = 0,1,2, . . . ,M, for an Mth order predictor are

generated at the output of each successive lattice segment of Fig. 5.3, we may view the
analysis lattice filter as an implementation of the Gram-Schmidt orthogonalization of
the vector y(n)= [yn, yn−1, yn−2, . . . , yn−M]T.

It is interesting to note, in this respect, that this implementation requires only knowl-
edge of the reflection coefficients {γ1, γ2, . . . , γM}.

The data vector y(n) can also be orthogonalized by means of the forward predictors,
using the matrix U. This representation, however, is not as conveniently realized by
the lattice structure because the resulting orthogonalized vector consists of forward
prediction errors that are orthogonal, but not at the same time instant. This can be seen
from the definition of the forward errors

Uy(n)=

⎡⎢⎢⎢⎣
1 a31 a32 a33

0 1 a21 a22

0 0 1 a11

0 0 0 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
yn
yn−1

yn−2

yn−3

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
e+3 (n)
e+2 (n− 1)
e+1 (n− 2)
e+0 (n− 3)

⎤⎥⎥⎥⎦
Thus, additional delays must be inserted at the forward outputs of the lattice struc-

ture to achieve orthogonalization. For this reason, the backward outputs, being mutually
orthogonal at the same time instant n, are preferred. The corresponding UL factoriza-
tion of R is in this basis

URUT = diag{E3, E2, E1, E0}
This is the reverse of Eq. 5.9.1) obtained by acting on both sides by the reversing

matrix J and using the fact that U = JLJ, the invariance of R = JRJ, and J2 = I.
The above orthogonalization may also be understood in the z-domain: since the

backward prediction error e−p (n) is the output of the reversed prediction-error filter
ARp(z) driven by the data sequence yn, we have for the cross-density

Se−p e−q (z)= ARp(z)Syy(z)ARq(z−1)

Integrating this expression over the unit circle and using Eq. (5.9.6), we find∮
u.c.
ARp(z)Syy(z)ARq(z−1)

dz
2πjz

=
∮

u.c.
Se−p e−q (z)

dz
2πjz

= Re−p e−q (0)= E
[
e−p (n)e−q (n)

] = δpqEp (5.9.7)

that is, the reverse polynomialsARp(z) are mutually orthogonal with respect to the above
inner product defined by the (positive-definite) weighting function Syy(z). Equation
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(5.9.7) is the z-domain expression of Eq. (5.9.2). This result establishes an intimate con-
nection between the linear prediction problem and the theory of orthogonal polynomials
on the unit circle developed by Szegö [57,58].

The LU factorization of R implies a UL factorization of the inverse of R; that is,
solving Eq. (5.9.1) for R−1 we have:

R−1 = LTD−1L (5.9.8)

Since the Levinson recursion generates all the lower order prediction-error filters, it
essentially generates the inverse of R.

The computation of this inverse may also be done recursively in the order, as follows.
To keep track of the order let us use an extra index

R−1
3 = LT3D−1

3 L3 (5.9.9)

The matrix L3 contains as a submatrix the matrix L2; in fact,

L3 =

⎡⎢⎢⎢⎣
1 0 0 0
a11 1 0 0
a22 a21 1 0
a33 a32 a31 1

⎤⎥⎥⎥⎦ =
[
L2 0

αααRT3 1

]
(5.9.10)

whereαααRT3 denotes the transpose of the reverse of the vector of prediction coefficients;
namely, αααRT3 = [a33, a32, a21]. The diagonal matrix D−1

3 may also be block divided in
the same manner:

D−1
3 =

[
D−1

2 0

0T 1

]
Inserting these block decompositions into Eq. (5.9.9) and using the lower order result

R−1
2 = LT2D−1

2 L2, we find

R−1
3 =

⎡⎢⎢⎣R
−1
2 + 1

E3
αααR3ααα

RT
3

1

E3
αααR3

1

E3
αααRT3

1

E3

⎤⎥⎥⎦ =
[
R−1

2 0

0T 0

]
+ 1

E3
b3bT3 (5.9.11)

where b3 = aR3 = [αααRT3 ,1]T= [a33, a32, a31,1]T. This is identical to Eq. (1.7.28).
Thus, through Levinson’s algorithm, as the prediction coefficients ααα3 and error E3

are obtained, the inverse of Rmay be updated to the next higher order. Eq. (5.9.11) also
suggests an efficient way of solving more general normal equations of the type

R3h3 =

⎡⎢⎢⎢⎣
R0 R1 R2 R3

R1 R0 R1 R2

R2 R1 R0 R1

R3 R2 R1 R0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
h30

h31

h32

h33

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
r0

r1

r2

r3

⎤⎥⎥⎥⎦ = r3 (5.9.12)

for a given right-hand vector r3. Such normal equations arise in the design of FIR Wiener
filters; for example, Eq. (4.3.9). The solution for h3 is obtained recursively from the
solution of similar linear equations of lower order. For example, let h2 be the solution
of the previous order

R2h2 =
⎡⎢⎣R0 R1 R2

R1 R0 R1

R2 R1 R0

⎤⎥⎦
⎡⎢⎣ h20

h21

h22

⎤⎥⎦ =
⎡⎢⎣ r0

r1

r2

⎤⎥⎦ = r2

where the right-hand side vector r2 is part of r3. Then, Eq. (5.9.11) implies a recursive
relationship between h3 and h2:
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h3 = R−1
3 r3 =

⎡⎢⎢⎣R
−1
2 + 1

E3
αααR3ααα

RT
3

1

E3
αααR3

1

E3
αααRT3

1

E3

⎤⎥⎥⎦
[

r2

r3

]
=

⎡⎢⎢⎣ h2 + 1

E3
αααR3 (r3 +αααRT3 r2)

1

E3
(r3 +αααRT3 r2)

⎤⎥⎥⎦
In terms of the reverse prediction-error filter b3 = aR3 = [a33, a32, a31,1]T= [αααRT3 ,1]T,
we may write

h3 =
[

h2

0

]
+ cb3 , where c = 1

E3
(r3 +αααRT3 r2)= 1

E3
bT3 r3 (5.9.13)

Thus, the recursive updating of the solution h must be done by carrying out the aux-
iliary updating of the prediction-error filters. The method requires O(M2) operations,
compared to O(M3) if the inverse of R were to be computed directly.

This recursive method of solving general normal equations, developed by Robinson
and Treitel, has been reviewed elsewhere [7,8,59–61]. Some additional insight into the
properties of these recursions can be gained by using the Toeplitz property of R. This
property together with the symmetric nature of R imply that R commutes with the
reversing matrix:

J3 =

⎡⎢⎢⎢⎣
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎤⎥⎥⎥⎦ = J−1
3 , J3R3J3 = R3 (5.9.14)

Therefore, even though the inverse R−1
3 is not Toeplitz, it still commutes with this

reversing matrix; that is,
J3R−1

3 J3 = R−1
3 (5.9.15)

The effect of this symmetry property on the block decomposition (5.9.11) may be
seen by decomposing J3 also as

J3 =
[

0 J2

1 0T

]
=

[
0T 1
J2 0

]

where J2 is the lower order reversing matrix. Combining Eq. (5.9.15) with Eq. (5.9.11),
we find

R−1
3 = J3R−1

3 J3 =
[

0T 1
J2 0

]⎡⎢⎢⎣R
−1
2 + 1

E3
αααR3ααα

RT
3

1

E3
αααR3

1

E3
αααRT3

1

E3

⎤⎥⎥⎦
[

0 J2

1 0T

]

or, since R2 commutes with J2, and J2αααR3 =ααα3, we have

R−1
3 =

⎡⎢⎢⎣
1

E3

1

E3
αααT3

1

E3
ααα3 R−1

2 + 1

E3
ααα3αααT3

⎤⎥⎥⎦ =
[

0 0T

0 R−1
2

]
+ 1

E3
a3aT3 (5.9.16)

which is the same as Eq. (1.7.35). Both ways of expressing R−1
3 given by Eqs. (5.9.16) and

(5.9.11), are useful. They may be combined as follows: Eq. (5.9.16) gives for the ijth
matrix element:

(R−1
3 )ij= (R−1

2 +ααα3αααT3E
1
3)i−1,j−1= (R−1

2 )i−1,j−1+α3iα3jE−1
3

which valid for 1 ≤ i, j ≤ 3. On the other hand, from Eq. (5.9.11) we have
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(R−1
3 )i−1,j−1= (R−1

2 )i−1,j−1+αR3iαR3jE−1
3

which is valid also for 1 ≤ i, j ≤ 3. Subtracting the two to cancel the common term
(R−1

2 )i−1,j−1, we obtain the Goberg-Semencul-Trench-Zohar recursion [62–66]:

(R−1
3 )ij= (R−1

3 )i−1,j−1+(ααα3αααT3 −αααR3αααRT3 )ijE
−1
3 , 1 ≤ i, j ≤ 3 (5.9.17)

which allows the building-up ofR−1
3 along each diagonal, provided one knows the “bound-

ary” values to get these recursions started. But these are:

(R−1
3 )00= E−1

3 , (R−1
3 )i0= (R−1

3 )0i= a3iE−1
3 , 1 ≤ i, j ≤ 3 (5.9.18)

Thus, from the prediction-error filter a3 and its reverse, the entire inverse of the
autocorrelation matrix may be built up. Computationally, of course, the best procedure
is to use Eq. (5.9.8), where L and D are obtained as byproducts of the Levinson recur-
sion. The subroutine lev of the appendix starts with the M + 1 autocorrelation lags
{R(0),R(1), . . . , R(M)} and generates the required matrices L and D. The main rea-
son for the existence of fast algorithms for Toeplitz matrices can be traced to the nesting
property that the principal submatrices of a Toeplitz matrix are simply the lower order
Toeplitz submatrices. Similar fast algorithms have been developed for other types of
structured matrices, such as Hankel and Vandermonde matrices [67–69].

5.10 Schur Algorithm

The Schur algorithm has its roots in the original work of Schur on the theory of functions
bounded in the unit disk [70,71]. It is an important signal processing tool in a variety of
contexts, such as linear prediction and signal modeling, fast matrix factorizations, filter
synthesis, inverse scattering, and other applications [71–92].

In linear prediction, Schur’s algorithm is an efficient alternative to Levinson’s algo-
rithm and can be used to compute the set of reflection coefficients from the autocor-
relation lags and also to compute the conventional LU Cholesky factorization of the
autocorrelation matrix. The Schur algorithm is essentially the gapped function recur-
sion (5.3.9). It proves convenient to work simultaneously with Eq. (5.3.9) and its reverse.
We define the forward and backward gapped functions of order p

g+p (k)= E[e+p (n)yn−k] , g−p (k)= E[e−p (n)yn−k] (5.10.1)

The forward one is identical to that of Eq. (5.3.8). The backward one is the convolu-
tion of the backward filter bp = aRp with the autocorrelation function; that is,

g+p (k)=
p∑
i=0

apiR(k− i) , g−p (k)=
p∑
i=0

bpiR(k− i) (5.10.2)

where bpi = ap,p−i. In the z-domain, we have

G+p (z)= Ap(z)Syy(z) , G−p (z)= ARp(z)Syy(z) (5.10.3)

Using Syy(z)= Syy(z−1), it follows that

G−p (z)= ARp(z)Syy(z)= z−pAp(z−1)Syy(z−1)= z−pG+p (z−1)

and in the time domain:
g−p (k)= g+p (p− k) (5.10.4)
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Thus, the backward gapped function is the reflected and delayed version of the
forward one. However, the delay is only p units—one less than required to completely
align the gaps. Therefore, the forward and backward gapped functions have slightly
different gaps of length p; namely,

g+p (k) = 0 , for k = 1,2, . . . , p

g−p (k) = 0 , for k = 0,1, . . . , p− 1
(5.10.5)

By the definition (5.10. l), the gap conditions of the backward function are equivalent
to the orthogonality conditions for the backward predictor; namely, that the estimation
error e−p (n) be orthogonal to the observations {yn−k, k = 0,1, . . . , p − 1} that make
up the estimate of yn−p. Inserting the lattice recursions (5.7.8) into (5.10.1), or using
the polynomial recursions (5.3.18) into (5.10.3), we obtain the lattice recursions for the
gapped functions, known as the Schur recursions

g+p+1(k) = g+p (k)−γp+1g−p (k− 1)

g−p+1(k) = g−p (k− 1)−γp+1g+p (k)
(5.10.6)

or, in matrix form [
g+p+1(k)
g−p+1(k)

]
=

[
1 −γp+1

−γp+1 1

][
g+p (k)
g−p (k− 1)

]

They are initialized by g±0 (k)= R(k). The first term of Eq. (5.10.6) is identical to Eq.
(5.3.9) and the second term is the reverse of Eq. (5.3.9) obtained by the substitution
k → p + 1 − k. The forward gap condition g+p+1(p + 1)= 0 can be solved for the
reflection coefficient

γp+1 =
g+p (p+ 1)
g−p (p)

(5.10.7)

Note that Eq. (5.10.4) implies g−p (p)= g+p (0)= Ep, and therefore, Eq. (5.10.7) is the
same as Eq. (5.3.11). For an Mth order predictor, we only need to consider the values
g±p (k), for k = 0,1, . . . ,M. We arrange these values (for the backward function) into the
column vector

g−p =

⎡⎢⎢⎢⎢⎢⎣
g−p (0)
g−p (1)

...
g−p (M)

⎤⎥⎥⎥⎥⎥⎦ (5.10.8)

By virtue of the gap conditions (5.10.5), the first p entries, k = 0,1, . . . , p−1, of this
vector are zero. Therefore, we may construct the lower-triangular matrix having the g−p s
as columns

G = [g−0 ,g−1 , · · · ,g−M] (5.10.9)

For example, ifM = 3,

G =

⎡⎢⎢⎢⎣
g−0 (0) 0 0 0
g−0 (1) g−1 (1) 0 0
g−0 (2) g−1 (2) g−2 (2) 0
g−0 (3) g−1 (3) g−2 (3) g−3 (3)

⎤⎥⎥⎥⎦
The first column of G consists simply of theM + 1 autocorrelation lags:

g−0 =

⎡⎢⎢⎢⎢⎢⎣
R(0)
R(1)

...
R(M)

⎤⎥⎥⎥⎥⎥⎦ (5.10.10)
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The main diagonal consists of the prediction errors of successive orders, namely,
g−p (p)= Ep, for p = 0,1, . . . ,M. Stacking the values of definition (5.10.1) into a vector,
we can write compactly,

g−p = E
[
ep(n)y(n)

]
(5.10.11)

where y(n)= [yn, yn−1, . . . , yn−M]T is the data vector for anMth order predictor. Thus,
the matrix G can be written as in Eq. (1.7.56)

G = E
[

y(n)
[
e−0 (n), e−1 (n), . . . , e−M(n)

]] = E[
y(n)e−(n)T

]
(5.10.12)

where e−(n)= [
e−0 (n), e−1 (n), . . . , e−M(n)

]T
is the decorrelated vector of backward pre-

diction errors. Following Eq. (1.7.57), we multiply (5.10.12) from the left by the lower
triangular matrix L, and using the transformation e−(n)= Ly(n) and Eq. (5.9.5), we
obtain

LG = LE[y(n)e−(n)T]= E[e−(n)e−(n)T]= D
Therefore, G is essentially the inverse of L

G = L−1D (5.10.13)

Using Eq. (5.9.1), we obtain the conventional LU Cholesky factorization of the auto-
correlation matrix R in the form

R = L−1DL−T = (GD−1)D(D−1GT)= GD−1GT (5.10.14)

The backward gapped functions are computed by iterating the Schur recursions
(5.10.6) for 0 ≤ k ≤ M and 0 ≤ p ≤ M. One computational simplification is that,
because of the presence of the gap, the functions g±p (k) need only be computed for
p ≤ k ≤ M (actually, g+p (p)= 0 could also be skipped). This gives rise to the Schur
algorithm:

0. Initialize in order by g±0 (k)= R(k), k = 0,1, . . . ,M.

1. At stage p, we have available g±p (k) for p ≤ k ≤M.

2. Compute γp+1 =
g+p (p+ 1)
g−p (p)

.

3. For p+ 1 ≤ k ≤M, compute

g+p+1(k)= g+p (k)−γp+1g−p (k− 1)

g−p+1(k)= g−p (k− 1)−γp+1g+p (k)

4. Go to stage p+ 1.

5. At the final orderM, set EM = g−M(M).

The subroutine schur (see Appendix B) is an implementation of this algorithm. The
inputs to the routine are the orderM and the lags {R(0),R(1), . . . , R(M)}. The outputs
are the parameters {EM,γ1, γ2, . . . , γM}. This routine is a simple alternative to lev. It
may be used in conjunction with frwlev, bkwlev, and rlev, to pass from one linear
prediction parameter set to another. The subroutine schur1 is a small modification
of schur that, in addition to the reflection coefficients, outputs the lower triangular
Cholesky factor G. The prediction errors can be read off from the main diagonal of G,
that is, EP = G(p,p), p = 0,1, . . . ,M.

Example 5.10.1: Sending the five autocorrelation lags, {128,−64,80,−88,89}, of Example 5.3.1
through schur1 gives the set of reflection coefficients {γ1, γ2, γ3, γ4} = {−0.5,0.5,−0.5,
0.5}, and the matrix G
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G =

⎡⎢⎢⎢⎢⎢⎢⎣
128 0 0 0 0
−64 96 0 0 0

80 −24 72 0 0
−88 36 0 54 0

89 −43.5 13.5 13.5 40.5

⎤⎥⎥⎥⎥⎥⎥⎦
Recall that the first column should be the autocorrelation lags and the main diagonal should
consist of the mean square prediction errors. It is easily verified that GD−1GT = R. ��

The computational bottleneck of the classical Levinson recursion is the computation
of the inner product (5.3.12). The Schur algorithm avoids this step by computing γp+1

as the ratio of the two gapped function values (5.10.7). Moreover, at each stage p, the
computations indicated in step 3 of the algorithm can be done in parallel. Thus, with
M parallel processors, the overall computation can be reduced to O(M) operations.
VLSI parallel hardware implementations of the Schur algorithm already exist [82,33]. As
formulated above, the Schur algorithm is essentially equivalent to the Le Roux-Gueguen
fixed-point algorithm [75]. The possibility of a fixed-point implementation arises from
the fact that all gapped functions have a fixed dynamic range, bounded by∣∣g±p (k)∣∣ ≤ R(0) (5.10.15)

This is easily seen by applying the Schwarz inequality to definition (5.10.1) and using
Ep ≤ R(0)∣∣g±p (k)∣∣2 = ∣∣E[e±p (n)yn−k]∣∣2 ≤ E[e±p (n)2]E[y2

n−k]≤ EpR(0)≤ R(0)2

The Schur algorithm admits a nice filtering interpretation in terms of the lattice struc-
ture. By definition, the gapped functions are the convolution of the forward/backward
pth order prediction filters with the autocorrelation sequence R(k). Therefore, g±p (k)
will be the outputs from the pth section of the lattice filter, Fig. 5.3, driven by the input
R(k). Moreover, Eq. (5.10.6) states that the (p+1)st reflection coefficient is obtainable
as the ratio of the two inputs to the (p+ 1)st lattice section, at time instant p+ 1 (note
that g−p (p)= g−p (p+ 1− 1) is outputted at time p from the pth section and is delayed
by one time unit before it is inputted to the (p+1)st section at time p+1.) The correct
values of the gapped functions g±p (k) are obtained when the input to the lattice filter is
the infinite double-sided sequence R(k). If we send in the finite causal sequence

x(k)= {R(0),R(1), . . . , R(M),0,0, . . . }
then, because of the initial and final transient behavior of the filter, the outputs of the
pth section will agree with g±p (k) only for p ≤ k ≤M. To see this, let y±p (k) denote the
two outputs. Because of the causality of the input and filter and the finite length of the
input, the convolutional filtering equation will be

y+p (k)=
min{p,k}∑

i=max{0,k−M}
api x(k− i)=

min{p,k}∑
i=max{0,k−M}

api R(k− i)

This agrees with Eq. (5.10.2) only after time p and before timeM, that is,

y±p (k)= g±p (k) , only for p ≤ k ≤M

The column vector y−p =
[
y−p (0), y−p (1), . . . , y−p (M)

]T
, formed by the first M back-

ward output samples of the pth section, will agree with g−p only for the entries p ≤ k ≤
M. Thus, the matrix of backward outputsY− = [y−0 ,y−1 , . . . ,y−M] formed by the columns
y−p will agree with G only in its lower-triangular part. But this is enough to determine
G because its upper part is zero.
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Example 5.10.2: Send the autocorrelation lags of Example 5.10.1 into the lattice filter of Fig.
5.3 (with all its delay registers initialized to zero), arrange the forward/backward outputs
from the pth section into the column vectors, y±p , and put these columns together to form
the output matrices Y±. The result is,

Y− =

⎡⎢⎢⎢⎢⎢⎢⎣
128 64 −64 64 −64
−64 96 64 −80 96

80 −24 72 64 −96
−88 36 0 54 64

89 −43.5 13.5 13.5 40.5

⎤⎥⎥⎥⎥⎥⎥⎦ , Y+ =

⎡⎢⎢⎢⎢⎢⎢⎣
128 128 128 128 128
−64 0 −32 −64 −96

80 48 0 32 72
−88 −48 −36 0 −32

89 45 27 27 0

⎤⎥⎥⎥⎥⎥⎥⎦
The lower-triangular part of Y− agrees with G. The forward/backward outputs y±p can be
computed using, for example, the routine lattice. They can also be computed directly by
convolving the prediction filters with the input. For example, the backward filter of order
4 given in Example 5.3.1 is aR4 = [−0.5,0.5,−0.1875,−0.25,1]T . Convolving it with the
autocorrelation sequence gives the last column of Y−

[128,−64,80,−88,89]∗[−0.5,0.5,−0.1875,−0.25,1]= [−64,96,−96,64,40.5, . . . ]

Convolving the forward filter a4 with the autocorrelation sequence gives the last column
of the matrix Y+

[128,−64,80,−88,89]∗[1,−0.25,−0.1875,0.5,−0.5]= [128,−96,72,−32,0, . . . ]

Note that we are interested only in the outputs for 0 ≤ k ≤ M = 4. The last 4 outputs (in
general, the last p outputs for a pth order filter) of these convolutions were not shown.
They correspond to the transient behavior of the filter after the input is turned off. ��

It is also possible to derive a split or immitance-domain version of the Schur algo-
rithm that achieves a further 50% reduction in computational complexity [46,47]. Thus,
with M parallel processors, the complexity of the Schur algorithm can be reduced to
O(M/2) operations. We define a symmetrized or split gapped function in terms of the
symmetric polynomial Fp(z) defined in Eq. (5.6.1)

gp(k)=
p∑
i=0

fpi R(k− i) , Gp(z)= Fp(z)Syy(z) (5.10.16)

It can be thought of as the output of the filter Fp(z) driven by the autocorrelation
sequence. Multiplying both sides of Eq. (5.6.1) by Syy(z) and using the definition (5.10.3),
we obtain Gp(z)= G+p−1(z)+z−1G−p−1(z), or, in the time domain

gp(k)= g+p−1(k)+g−p−1(k− 1) (5.10.17)

Similarly, Eq. (5.6.2) gives

(1− γp)gp(k)= g+p (k)+g−p (k) (5.10.18)

It follows from Eqs. (5.10.4) and (5.10.18) or from the symmetry property of Fp(z)
that gp(k)= gp(p− k), and in particular, gp(0)= gp(p). The split Levinson algorithm
of Section 5.6 requires the computation of the coefficients αp+1 = τp+1/τp. Setting
k = 0 in the definition (5.10.16) and using the reflection symmetry R(i)= R(−i), we
recognize that the inner product of Eq. (5.6.6) is τp = gp(0)= gp(p). Therefore, the
coefficient αp+1 can be written as the ratio of the two gapped function values

αp+1 = gp+1(p+ 1)
gp(p)

(5.10.19)
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Because the forward and backward gapped functions have overlapping gaps, it fol-
lows that gp(k) will have gap gp(k)= 0, for k = 1,2, . . . , p− 1. Therefore, for an Mth
order predictor, we only need to know the values of gp(k) for p ≤ k ≤ M. These
can be computed by the following three-term recurrence, obtained by multiplying the
recurrence (5.6.4) by Syy(z)

gp+2(k)= gp+1(k)+gp+1(k− 1)−αp+1gp(k− 1) (5.10.20)

Using F0(z)= 2 and F1(z)= 1 + z−1, it follows from the definition that g0(k)=
2R(k) and g1(k)= R(k)+R(k−1). To initialize τ0 correctly, however, we must choose
g0(0)= R(0), so that τ0 = g0(0)= R(0). Thus, we are led to the following split Schur
algorithm:

0. Initialize by g0(k)= 2R(k), g1(k)= R(k)+R(k − 1), for k = 1,2, . . . ,M, and
g0(0)= R(0), γ0 = 0.

1. At stage p, we have available γp, gp(k) for p ≤ k ≤ M, and gp+1(k) for p+ 1 ≤
k ≤M.

2. Compute αp+1 from Eq. (5.10.19) and solve for γp+1 = −1+αp+1/(1− γp).
3. For p+ 2 ≤ k ≤M, compute gp+2(k) using Eq. (5.10.20)

4. Go to stage p+ 1.

Recalling that Ep = τp(1 − γp), we may set at the final order EM = τM(1 − γM)=
gM(M)(1 − γM). Step 3 of the algorithm requires only one multiplication for each k,
whereas step 3 of the ordinary Schur algorithm requires two. This reduces the com-
putational complexity by 50%. The subroutine schur2 (see Appendix B) is an imple-
mentation of this algorithm. The inputs to the routine are the order M and the lags
{R(0),R(1), . . . , R(M)}. The outputs are the parameters {EM,γ1, γ2, . . . , γM}. The
routine can be modified easily to include the computation of the backward gapped func-
tions g−p (k), which are the columns of the Cholesky matrix G. This can be done by the
recursion

g−p (k)= g−p (k− 1)+(1− γp)gp(k)−gp+1(k) (5.10.21)

where p + 1 ≤ k ≤ M, with starting value g−p (p)= Ep = gp(p)(1 − γp). This recur-
sion will generate the lower-triangular part of G. Equation (5.10.21) follows by writing
Eq. (5.10.17) for order (p + 1) and subtracting it from Eq. (5.10.18). Note, also, that
Eq. (5.10.17) and the bound (5.10.15) imply the bound |gp(k)| ≤ 2R(0), which allows a
fixed-point implementation.

We finish this section by discussing the connection of the Schur algorithm to Schur’s
original work. It follows from Eq. (5.10.3) that the ratio of the two gapped functions
G±p (z) is an all-pass stable transfer function, otherwise known as a lossless bounded real
function [56]:

Sp(z)=
G−p (z)
G+p (z)

= A
R
p(z)
Ap(z)

= app + ap,p−1z−1 + · · · + z−p
1+ ap1z−1 + · · · + appz−p (5.10.22)

The all-pass property follows from the fact that the reverse polynomial AR(z) has
the same magnitude response asAp(z). The stability property follows from the minimum-
phase property of the polynomials Ap(z), which in turn is equivalent to all reflection
coefficients having magnitude less than one. Such functions satisfy the boundedness
property ∣∣Sp(z)∣∣ ≤ 1 , for |z| ≥ 1 (5.10.23)

with equality attained on the unit circle. Taking the limit z → ∞, it follows from
Eq. (5.10.22) that the reflection coefficient γp is obtainable from Sp(z) by

Sp(∞)= app = −γp (5.10.24)
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Using the backward Levinson recursion (5.3.23), we obtain a new all-pass function

Sp−1(z)=
G−p−1(z)
G+p−1(z)

= A
R
p−1(z)
Ap−1(z)

= z(γpAp +A
R
p)

Ap + γpARp
or, dividing numerator and denominator by Ap(z)

Sp−1(z)= z Sp(z)+γp
1+ γpSp(z) (5.10.25)

This is Schur’s original recursion [70]. Applying this recursion repeatedly from some
initial value p =M down to p = 0, with S0(z)= 1, will give rise to the set of reflection or
Schur coefficients {γ1, γ2, . . . , γM}. The starting all-pass function SM(z) will be stable
if and only if all reflection coefficients have magnitude less than one. We note finally
that there is an intimate connection between the Schur algorithm and inverse scattering
problems [76, 79, 80, 86, 87, 90–92, 138]. In Section 5.13, we will see that the lattice re-
cursions (5.10.6) describe the forward and backward moving waves incident on a layered
structure. The Schur function Sp(z) will correspond to the overall reflection response
of the structure, and the recursion (5.10.25) will describe the successive removal of the
layers. The coefficients γp will represent the elementary reflection coefficients at the
layer interfaces. This justifies the term reflection coefficients for the γs.

5.11 Lattice Realizations of FIR Wiener Filters

In this section, we combine the results of Sections 4.3 and 5.9 to derive alternative
realizations of Wiener filters that are based on the Gram-Schmidt lattice structures.
Consider the FIR Wiener filtering problem of estimating a desired signal xn, on the basis
of the related signal yn, using anMth order filter. The I/O equation of the optimal filter
is given by Eq. (4.3.8). The vector of optimal weights is determined by solving the set of
normal equations, given by Eq. (4.3.9). The discussion of the previous section suggests
that Eq. (4.3.9) can be solved efficiently using the Levinson recursion. Defining the data
vector

y(n)=

⎡⎢⎢⎢⎢⎢⎣
yn
yn−1

...
yn−M

⎤⎥⎥⎥⎥⎥⎦ (5.11.1)

we rewrite Eq. (4.3.9) in the compact matrix form

Ryyh = rxy (5.11.2)

where Ryy is the (M+1)×(M+1) autocorrelation matrix of y(n), and rxy, the (M+1)-
vector of cross-correlations between xn, and y(n), namely,

Ryy = E
[
y(n)y(n)T

]
, rxy = E[xny(n)]=

⎡⎢⎢⎢⎢⎢⎣
Rxy(0)
Rxy(1)

...
Rxy(M)

⎤⎥⎥⎥⎥⎥⎦ (5.11.3)

and h is the (M + 1)-vector of optimal weights

h =

⎡⎢⎢⎢⎢⎢⎣
h0

h1

...
hM

⎤⎥⎥⎥⎥⎥⎦ (5.11.4)
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The I/O equation of the filter, Eq. (5.9.4), is

x̂n = hTy(n)= h0yn + h1yn−1 + · · · + hMyn−M (5.11.5)

Next, consider the Gram-Schmidt transformation of Eq. (5.9.4) from the data vector
y(n) to the decorrelated vector e−(n):

e−(n)= Ly(n) or,

⎡⎢⎢⎢⎢⎢⎣
e−0 (n)
e−1 (n)

...
e−M(n)

⎤⎥⎥⎥⎥⎥⎦ = L
⎡⎢⎢⎢⎢⎢⎣
yn
yn−1

...
yn−M

⎤⎥⎥⎥⎥⎥⎦ (5.11.6)

Inserting Eq. (5.11.6) into Eq. (5.11.5), we find

x̂n = hTL−1e−(n)

Defining the (M + 1)-vector
g = L−Th (5.11.7)

we obtain the alternative I/O equation for the Wiener filter:

x̂n = gTe−(n)=
M∑
p=0

gpe−p (n)= g0e−0 (n)+g1e−1 (n)+· · · + gMe−M(n) (5.11.8)

This is easily recognized as the projection of xn onto the subspace spanned by{
e−0 (n), e−1 (n), . . . , e−M(n)

}
, which is the same as that spanned by the data vector {yn,

yn−1, . . . , yn−M}. Indeed, it follows from Eqs. (5.11.7) and (5.11.2) that

gT = hTL−1 = E[xny(n)T]E[y(n)y(n)T]−1L−1

= E[xne−(n)T]L−T
(
L−1E[e−(n)e−(n)T]L−T

)−1L−1

= E[xne−(n)T]E[e−(n)e−(n)T]−1

= [
E[xne−0 (n)]/E0, E[xne−1 (n)]/E1, . . . , E[xne−M(n)]/EM

]
so that the estimate of xn can be expressed as

x̂n = E[xne−(n)T]E[e−(n)e−(n)T]−1e−(n)= E[xny(n)T]E[y(n)y(n)T]−1y(n)

The key to the lattice realization of the optimal filtering equation (5.11.8) is the
observation that the analysis lattice filter of Fig. 5.3 for the process yn, provides, in its
successive lattice stages, the signals e−p (n)which are required in the sum (5.11.8). Thus,
if the weight vector g is known, an alternative realization of the optimal filter will be as
shown in Fig. 5.5. By comparison, the direct form realization using Eq. (5.11.5) operates
directly on the vector y(n), which, at each time instant n, is available at the tap registers
of the filter. This is depicted in Fig. 5.6.

Both types of realizations can be formulated adaptively, without requiring prior
knowledge of the filter coefficients or the correlation matrices Ryy and rxy. We will
discuss adaptive implementations in Chapter 7. If Ryy and rxy are known, or can be es-
timated, then the design procedure for both the lattice and the direct form realizations
is implemented by the following three steps:

1. Using Levinson’s algorithm, implemented by the subroutine lev, perform the LU
Cholesky factorization of Ryy, to determine the matrices L and D.
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Fig. 5.5 Lattice realization of FIR Wiener filter.

Fig. 5.6 Direct-form realization of FIR Wiener filter.

2. The vector of weights g can be computed in terms of the known quantities L,D, rxy
as follows:

g = L−Th = L−TR−1
yy rxy = L−T

(
LTD−1L

)
rxy = D−1Lrxy

3. The vector h can be recovered from g by h = LTg.

The subroutine firw (see Appendix B) is an implementation of this design procedure.
The inputs to the subroutine are the orderM and the correlation lags

{
Ryy(0),Ryy(1),
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. . . , Ryy(M)
}

and
{
Rxy(0),Rxy(1), . . . , Rxy(M)

}
. The outputs are the quantities L,D,g,

and h. The estimate (5.11.8) may also be written recursively in the order of the filter. If
we denote,

x̂p(n)=
p∑
i=0

gie−i (n) (5.11.9)

we obtain the recursion

x̂p(n)= x̂p−1(n)+gpe−p (n) , p = 0,1, . . . ,M (5.11.10)

initialized as x̂−1(n)= 0. The quantity x̂p(n) is the projection of xn on the subspace
spanned by

{
e−0 (n), e−1 (n), . . . , e−p (n)

}
, which by virtue of the lower-triangular nature

of the matrix L is the same space as that spanned by {yn, yn−1, . . . , yn−p}. Thus, x̂p(n)
represents the optimal estimate of xn based on a pth order filter. Similarly, x̂p−1(n)
represents the optimal estimate of xn based on the (p− 1)th order filter; that is, based
on the past p− 1 samples {yn, yn−1, . . . , yn−p+1}. These two subspaces differ by yn−p.

The term e−p (n) is by construction the best postdiction error of estimating yn−p from
the samples {yn, yn−1, . . . , yn−p+1}; that is, e−p (n) is the orthogonal complement of yn−p
projected on that subspace. Therefore, the term gpe−p (n) in Eq. (5.11.10) represents the
improvement in the estimate of xn that results by taking into account the additional
past value yn−p; it represents that part of xn that cannot be estimated in terms of the
subspace {yn, yn−1, . . . , yn−p+1}. The estimate x̂p(n) of xn is better than x̂p−1(n) in the
sense that it produces a smaller mean-squared estimation error. To see this, define the
estimation errors in the two cases

ep(n)= xn − x̂p(n) , ep−1(n)= xn − x̂p−1(n)

Using the recursion (5.11.10), we find

ep(n)= ep−1(n)−gpe−p (n) (5.11.11)

Using gp = E[xne−p (n)]/Ep, we find for Ep = E[ep(n)2]

Ep = E[x2
n]−

p∑
i=0

giE[xne−i (n)]= Ep−1 − gpE[xne−p (n)]

= Ep−1 −
(
E[xne−p (n)]

)2/Ep = Ep−1 − g2
pEp

Thus, Ep is smaller than Ep−1. This result shows explicitly how the estimate is con-
stantly improved as the length of the filter is increased. The nice feature of the lattice
realization is that the filter length can be increased simply by adding more lattice sec-
tions without having to recompute the weights gp of the previous sections. A realization
equivalent to Fig. 5.5, but which shows explicitly the recursive construction (5.11.10) of
the estimate of xn and of the estimation error (5.11.11), is shown in Fig. 5.7.

The subroutine lwf (see Appendix B) is an implementation of the lattice Wiener fil-
ter of Fig. 5.7. The routine dwf implements the direct-form Wiener filter of Fig. 5.6.
Each call to these routines transforms a pair of input samples {x, y} into the pair of
output samples {x̂, e} and updates the internal state of the filter. Successive calls over
n = 0,1,2, . . . , will transform the input sequences {xn, yn} into the output sequences
{x̂n, en}. In both realizations, the internal state of the filter is taken to be the vector of
samples stored in the delays of the filter; that is, wp(n)= e−p−1(n− 1), p = 1,2, . . . ,M
for the lattice case, and wp(n)= yn−p, p = 1,2, . . . ,M for the direct-form case. By
allowing the filter coefficients to change between calls, these routines can be used in
adaptive implementations.



190 5. Linear Prediction

Fig. 5.7 Lattice realization of FIR Wiener filter.

Next, we present a Wiener filter design example for a noise canceling application.
The primary and secondary signals x(n) and y(n) are of the form

x(n)= s(n)+v1(n) , y(n)= v2(n)

where s(n) is a desired signal corrupted by noise v1(n). The signal v2(n) is correlated
with v1(n) but not with s(n), and provides a reference noise signal. The noise canceler
is to be implemented as a Wiener filter of order M, realized either in the direct or the
lattice form. It is shown below:

Its basic operation is that of a correlation canceler; that is, the optimally designed
filter H(z) will transform the reference noise v2(n) into the best replica of v1(n), and
then proceed to cancel it from the output, leaving a clean signal s(n). For the purpose
of the simulation, we took s(n) to be a simple sinusoid

s(n)= sin(ω0n) , ω0 = 0.075π [rads/sample]

and v1(n) and v2(n) were generated by the difference equations

v1(n) = −0.5v1(n− 1)+v(n)
v2(n) = 0.8v2(n− 1)+v(n)

driven by a common, zero-mean, unit-variance, uncorrelated sequence v(n). The dif-
ference equations establish a correlation between the two noise components v1 and v2,
which is exploited by the canceler to effect the noise cancellation.

Figs. 5.8 and 5.9 show 100 samples of the signals x(n), s(n), and y(n) generated
by a particular realization of v(n). For M = 4 and M = 6, the sample autocorrelation
and cross-correlation lags, Ryy(k), Rxy(k), k = 0,1, . . . ,M, were computed and sent
through the routine firw to get the filter weights g and h.

The reference signal yn was filtered through H(z) to get the estimate x̂n—which
is really an estimate of v1(n)—and the estimation error e(n)= x(n)−x̂(n), which is
really an estimate of s(n). This estimate of s(n) is shown in Figs. (5.10) and 5.11, for
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Fig. 5.8 Noise corrupted sinusoid.
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Fig. 5.9 Reference noise.

the casesM = 4 andM = 6, respectively. The improvement afforded by a higher order
filter is evident. For the particular realization of x(n) and y(n) that we used, the sample
correlations Ryy(k), Rxy(k), k = 0,1, . . . ,M, were:

Ryy = [2.5116, 1.8909, 1.2914, 0.6509, 0.3696, 0.2412, 0.1363]

Rxy = [0.7791, −0.3813, 0.0880, −0.3582, 0.0902, −0.0684, 0.0046]

and the resulting vector of lattice weights gp, p = 0,1, . . . ,M, reflection coefficients γp,
p = 1,2, . . . ,M, and direct-form weights hm,m = 0,1, . . . ,M were forM = 6,

g = [0.3102, −0.8894, 0.4706, −0.2534, 0.1571, −0.0826, 0.0398]

γγγ = [0.7528, −0.1214, −0.1957, 0.1444, 0.0354, −0.0937]

h = [0.9713, −1.2213, 0.6418, −0.3691, 0.2245, −0.1163, 0.0398]

To get the g and γγγ of the case M = 4, simply ignore the last two entries in the above.
The corresponding h is in this case:

h = [0.9646, −1.2262, 0.6726, −0.3868, 0.1571]

Using the results of Problems 5.25 and 5.26, we may compute the theoretical filter
weights for this example, and note that they compare fairly well with the estimated ones
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Fig. 5.10 Output of noise canceler (M = 4).
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Fig. 5.11 Output of noise canceler (M = 6).

that were based on the length-100 data blocks. ForM = 6, we have:

g = [0.2571, −0.9286, 0.4643, −0.2321, 0.1161, −0.0580, 0.0290]

γγγ = [0.8, 0, 0, 0, 0, 0]

h = [1, −1.3, 0.65, −0.325, 0.1625, −0.0812, 0.0290]

As we discussed in Section 1.7, the lattice realizations based on the backward orthog-
onal basis have three major advantages over the direct-form realizations: (a) the filter
processes non-redundant information only, and hence adaptive implementations would
adapt faster; (b) the design of the optimal filter weights g does not require any matrix
inversion; and (c) the lower-order portions of g are already optimal. Moreover, it appears
that adaptive versions of the lattice realizations have better numerical properties than
the direct-form versions. In array processing problems, because the data vector y(n)
does not have the tapped-delay line form (5.11.1), the Gram-Schmidt orthogonalization
cannot be done by a simple a lattice filter. It requires a more complicated structure that
basically amounts to carrying out the lower-triangular linear transformation (5.11.6).
The benefits, however, are the same. We discuss adaptive versions of Gram-Schmidt
preprocessors for arrays in Chapter 7.
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5.12 Autocorrelation, Covariance, and Burg’s Methods

As mentioned in Section 5.3, the finite order linear prediction problem may be thought
of as an approximation to the infinite order prediction problem. For large enough order
p of the predictor, the prediction-error filter Ap(z) may be considered to be an ade-
quate approximation to the whitening filter A(z) of the process yn. In this case, the
prediction-error sequence e+p (n) is approximately white, and the inverse synthesis filter
1/Ap(z) is an approximation to the signal model B(z) of yn. Thus, we have obtained
an approximate solution to the signal modeling problem depicted below:

The variance of e+p (n) is Ep. Depending on the realization one uses, the model pa-
rameters are either the set {ap1, ap2, . . . , app;Ep}, or, {γ1, γ2, . . . , γp;Ep}. Because these
can be determined by solving a simple linear system of equations—that is, the normal
equations (5.3.7)—this approach to the modeling problem has become widespread.

In this section, we present three widely used methods of extracting the model pa-
rameters from a given block of measured signal values yn [3,6,10,11,93–103]. These
methods are:

1. The autocorrelation, or Yule-Walker, method
2. The covariance method.
3. Burg’s method.

We have already discussed the Yule-Walker method, which consists simply of replac-
ing the theoretical autocorrelations Ryy(k) with the corresponding sample autocorre-
lations R̂yy(k) computed from the given frame of data. This method, like the other
two, can be justified on the basis of an appropriate least-squares minimization criterion
obtained by replacing the ensemble averages E[e+p (n)2] by appropriate time averages.

The theoretical minimization criteria for the optimal forward and backward predic-
tors are

E[e+p (n)2]= min , E[e−p (n)2]= min (5.12.1)

where e+p (n) and e−p (n) are the result of filtering yn through the prediction-error fil-
ter a = [1, ap1, . . . , app]T and its reverse aR = [app, ap,p−1, . . . , ap1,1]T, respectively;
namely,

e+p (n) = yn + ap1yn−1 + ap2yn−2 + · · · + appyn−p
e−p (n) = yn−p + ap1yn−p+1 + ap2yn−p+2 + · · · + appyn

(5.12.2)

Note that in both cases the mean-square value of e±p (n) can be expressed in terms
of the (p+ 1)×(p+ 1) autocorrelation matrix

R(i, j)= R(i− j)= E[yn+i−jyn]= E[yn−jyn−i] , 0 ≤ i, j ≤ p
as follows

E[e+p (n)2]= E[e−p (n)2]= aTRa (5.12.3)

Consider a frame of length N of measured values of yn

y0, y1, . . . , yN−1

1. The Yule-Walker, or autocorrelation, method replaces the ensemble average (5.12.1)
by the least-squares time-average criterion

E =
N+p−1∑
n=0

e+p (n)2= min (5.12.4)
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where e+p (n) is obtained by convolving the length-(p + 1) prediction-error filter a =
[1, ap1, . . . , app]T with the length-N data sequence yn. The length of the sequence
e+p (n) is, therefore, N + (p + 1)−1 = N + p, which justifies the upper-limit in the
summation of Eq. (5.12.4). This convolution operation is equivalent to assuming that
the block of data yn has been extended both to the left and to the right by padding it
with zeros and running the filter over this extended sequence. The last p output samples
e+p (n), N ≤ n ≤ N + p − 1, correspond to running the filter off the ends of the data
sequence to the right. These terms arise because the prediction-error filter has memory
of p samples. This is depicted below:

Inserting Eq. (5.12.2) into (5.12.4), it is easily shown that E can be expressed in the
equivalent form

E =
N+p−1∑
n=0

e+p (n)2=
p∑
i,j=0

aiR̂(i− j)aj = aTR̂a (5.12.5)

where R̂(k) denotes the sample autocorrelation of the length-N data sequence yn:

R̂(k)= R̂(−k)=
N−1−k∑
n=0

yn+kyn , 0 ≤ k ≤ N − 1

where the usual normalization factor 1/N has been ignored. This equation is identical
to Eq. (5.12.3) with R replaced by R̂. Thus, the minimization of the time-average index
(5.12.5) with respect to the prediction coefficients will lead exactly to the same set of
normal equations (5.3.7) with R replaced by R̂. The positive definiteness of the sample
autocorrelation matrix also guarantees that the resulting prediction-error filter will be
minimum phase, and thus also that all reflection coefficients will have magnitude less
than one.

2. The covariance method replaces Eq. (5.12.1) by the time average

E =
N−1∑
n=p
e+p (n)2= min (5.12.6)

where the summation in n is such that the filter does not run off the ends of the data
block, as shown below:

To explain the method and to see its potential problems with stability, consider a
simple example of a length-three sequence and a first-order predictor:

E =
2∑
n=1

e+1 (n)2= e+1 (1)2+e+1 (2)2= (y1 + a11y0)2+(y2 + a11y1)2
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Differentiating with respect to a11 and setting the derivative to zero gives

(y1 + a11y0)y0 + (y2 + a11y1)y1 = 0

a11 = −y1y0 + y2y1

y2
0 + y2

1

Note that the denominator does not depend on the variable y2 and therefore it is
possible, if y2 is large enough, for a11 to have magnitude greater than one, making
the prediction-error filter nonminimal phase. Although this potential stability problem
exists, this method has been used with good success in speech processing, with few,
if any, such stability problems. The autocorrelation method is sometimes preferred in
speech processing because the resulting normal equations have a Toeplitz structure and
their solution can be obtained efficiently using Levinson’s algorithm. However, similar
ways of solving the covariance equations have been developed recently that are just as
efficient [98].

3. Although the autocorrelation method is implemented efficiently, and the resulting
prediction-error filter is guaranteed to be minimum phase, it suffers from the effect of
windowing the data sequence yn, by padding it with zeros to the left and to the right.
This reduces the accuracy of the method somewhat, especially when the data record N
is short. In this case, the effect of windowing is felt more strongly. The proper way
to extend the sequence yn, if it must be extended, is a way compatible with the signal
model generating this sequence. Since we are trying to determine this model, the fairest
way of proceeding is to try to use the available data block in a way which is maximally
noncommittal as to what the sequence is like beyond the ends of the block.

Burg’s method, also known as the maximum entropy method (MEM), arose from the
desire on the one hand not to run off the ends of the data, and, on the other, to always
result in a minimum-phase filter. Burg’s minimization criterion is to minimize the sum-
squared of both the forward and the backward prediction errors:

E =
N−1∑
n=p

[
e+p (n)2+e−p (n)2] = min (5.12.7)

where the summation range is the same as in the covariance method, but with both the
forward and the reversed filters running over the data, as shown:

If the minimization is performed with respect to the coefficients api, it is still possi-
ble for the resulting prediction-error filter not to be minimum phase. Instead, Burg sug-
gests an iterative procedure: Suppose that the prediction-error filter [1, ap−1,1, ap−1,2,
. . . , ap−1,p−1] of order (p − 1) has already been determined. Then, to determine the
prediction-error filter of order p, one needs to know the reflection coefficient γp and to
apply the Levinson recursion:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
ap1

ap2

...
ap,p−1

app

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
ap−1,1
ap−1,2

...
ap−1,p−1

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
− γp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
ap−1,p−1

ap−1,p−2

...
ap−1,1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5.12.8)
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To guarantee the minimum-phase property, the reflection coefficient γp must have
magnitude less than one. The best choice for γp is that which minimizes the perfor-
mance index (5.12.7). Differentiating with respect to γp and setting the derivative to
zero we find

∂E
∂γp

= 2
N−1∑
n=p

[
e+p (n)

∂e+p (n)
∂γp

+ e−p (n)
∂e−p (n)
∂γp

]
= 0

Using the lattice relationships

e+p (n) = e+p−1(n)−γpe−p−1(n− 1)

e−p (n) = e−p−1(n− 1)−γpe+p−1(n)
(5.12.9)

both valid for p ≤ n ≤ N − 1 if the filter is not to run off the ends of the data, we find
the condition

N−1∑
n=p

[
e+p (n)e

−
p−1(n− 1)+e−p (n)e+p−1(n)

] = 0 , or,

N−1∑
n=p

[(
e+p−1(n)−γpe−p−1(n− 1)

)
e−p−1(n− 1)+(

e−p−1(n− 1)−γpe+p−1(n)
)
e+p−1(n)

] = 0

which can be solved for γp to give

γp =
2
N−1∑
n=p
e+p−1(n)e

−
p−1(n− 1)

N−1∑
n=p

[
e+p−1(n)2+e−p−1(n− 1)2] (5.12.10)

This expression for γp is of the form

γp = 2a · b

|a|2 + |b|2
where a and b are vectors. Using the Schwarz inequality, it is easily verified that γp has
magnitude less than one. Equations (5.12.8) through (5.12.10) define Burg’s method.
The computational steps are summarized below:

0. Initialize in order as follows:

e+0 (n)= e−0 (n)= yn , for 0 ≤ n ≤ N − 1 , and A0(z)= 1, E0 = 1

N

N−1∑
n=0

y2
n

1. At stage (p− 1), we have available the quantities:

Ap−1(z), Ep−1, and e±p−1(n), for p− 1 ≤ n ≤ N − 1

2. Using Eq. (5.12.10), compute the reflection coefficient γp.

3. Using (5.12.8), compute Ap(z).
4. Using (5.12.9), compute e±p (n), for p ≤ n ≤ N − 1.

5. Update the mean-square error by Ep = (1− γ2
p)Ep−1.

6. Go to stage p.

The subroutine burg (see Appendix B) is an implementation of this method. The in-
puts to the subroutine are the vector of data samples {y0, y1, . . . , yN−1} and the desired
final order M of the predictor. The outputs are all the prediction-error filters of order
up to M, arranged as usual into the lower triangular matrix L, and the corresponding
mean-square prediction errors {E0, E1, . . . , EM}.
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Example 5.12.1: The length-six block of data

yn = [4.684, 7.247, 8.423, 8.650, 8.640, 8.392]

forn = 0,1,2,3,4,5, is known to have been generated by sending zero-mean, unit-variance,
white-noise εn through the difference equation

yn − 1.70yn−1 + 0.72yn−2 = εn

Thus, the theoretical prediction-error filter and mean-square error areA2(z)= 1−1.70z−1+
0.72z−2 and E2 = 1. Using Burg’s method, extract the model parameters for a second-order
model. The reader is urged to go through the algorithm by hand. Sending the above six
yn samples through the routine burg, we find the first- and second-order prediction-error
filters and the corresponding errors:

A1(z) = 1− 0.987z−1 , E1 = 1.529

A2(z) = 1− 1.757z−1 + 0.779z−2 , E2 = 0.60

We note that the theoretical first-order filter obtained from A2(z)= 1−1.70z−1+0.72z−2

via the backward Levinson recursion is A1(z)= 1− 0.9884z−1. ��

The resulting set of LPC model parameters, from any of the above analysis methods,
can be used in a number of ways as suggested in Section 1.11. One of the most successful
applications has been to the analysis and synthesis of speech [6,104–112]. Each frame
of speech, of duration of the order of 20 msec, is subjected to the Yule-Walker analysis
method to extract the corresponding set of model parameters. The order M of the
predictor is typically 10–15. Pitch and voiced/unvoiced information are also extracted.
The resulting set of parameters represents that speech segment.

To synthesize the segment, the set of model parameters are recalled from memory
and used in the synthesizer to drive the synthesis filter. The latter is commonly realized
as a lattice filter. Lattice realizations are preferred because they are much better well-
behaved under quantization of their coefficients (i.e., the reflection coefficients) than
the direct-form realizations [6,108,109]. A typical speech analysis and synthesis system
is shown in Fig. 5.12.

Fig. 5.12 LPC analysis and synthesis of speech.

Linear predictive modeling techniques have also been applied to EEG signal process-
ing in order to model EEG spectra, to classify EEGs automatically, to detect EEG transients
that might have diagnostic significance, and to predict the onset of epileptic seizures
[113–120].

LPC methods have been applied successfully to signal classification problems such as
speech recognition [107,121-126] or the automatic classification of EEGs [117]. Distance
measures between two sets of model parameters extracted from two signal frames can
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be used as measures of similarity between the frames. Itakura’s LPC distance measure
can be introduced as follows: Consider two autoregressive signal sequences, the test
sequence yT(n) to be compared against the reference sequence yR(n). Let AT(z) and
AR(z) be the two whitening filters, both of orderM. The two signal models are

Now, suppose the sequence to be tested, yT(n), is filtered through the whitening
filter of the reference signal

resulting in the output signal eT(n). The mean output power is easily expressed as

E[eT(n)2] = a†RRTaR =
∫ π
−π
SeTeT(ω)

dω
2π

=
∫ π
−π

∣∣AR(ω)∣∣2SyTyT(ω)
dω
2π

=
∫ π
−π

∣∣AR(ω)∣∣2 σ2
εT∣∣AT(ω)∣∣2

dω
2π

where RT is the autocorrelation matrix of yT(n). On the other hand, if yT(n) is filtered
through its own whitening filter, it will produce εT(n). Thus, in this case

σ2
εT = E[εT(n)2]= a†TRTaT

It follows that
E[eT(n)2]
E[εT(n)2]

= a†RRTaR

a†TRTaT
=

∫ π
−π

∣∣AR(ω)∣∣2∣∣AT(ω)∣∣2

dω
2π

(5.12.11)

The log of this quantity is Itakura’s LPC distance measure

d(aT, aR)= log

(
E[eT(n)2]
E[εT(n)2]

)
= log

(
a†RRTaR

a†TRTaT

)
= log

[∫ π
−π

∣∣AR(ω)∣∣2∣∣AT(ω)∣∣2

dω
2π

]

In practice, the quantities aT, RT, and aR are extracted from a frame of yT(n) and a
frame of yR(n). If the model parameters are equal, the distance is zero. This distance
measure effectively provides a comparison between the two spectra of the processes
yT and yR, but instead of comparing them directly, a prewhitening of yT(n) is carried
out by sending it through the whitening filter of the other signal. If the two spectra
are close, the filtered signal eT(n) will be close to white—that is, with a spectrum close
to being flat; a measure of this flatness is precisely the above integrated spectrum of
Eq. (5.12.11).

5.13 Dynamic Predictive Deconvolution—Waves in Layered Me-

dia

The analysis and synthesis lattice filters, implemented via the Levinson recursion, were
obtained within the context of linear prediction. Here, we would like to point out the re-
markable fact that the same analysis and synthesis lattice structures also occur naturally
in the problem of wave propagation in layered media [6,7,9,59,61,95,104,127–144]. This
is perhaps the reason behind the great success of linear prediction methods in speech
and seismic signal processing. In fact, historically many linear prediction techniques
were originally developed within the context of these two application areas.
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In speech, the vocal tract is modeled as an acoustic tube of varying cross-sectional
area. It can be approximated by the piece-wise constant area approximation shown
below:

The acoustic impedance of a sound wave varies inversely with the tube area

Z = ρc
A

where ρ, c,A are the air density, speed of sound, and tube area, respectively. Therefore,
as the sound wave propagates from the glottis to the lips, it will suffer reflections every
time it encounters an interface; that is, every time it enters a tube segment of differ-
ent diameter. Multiple reflections will be set up within each segment and the tube will
reverberate in a complicated manner depending on the number of segments and the
diameter of each segment. By measuring the speech wave that eventually comes out of
the lips, it is possible to remove, or deconvolve, the reverberatory effects of the tube
and, in the process, extract the tube parameters, such as the areas of the segments or,
equivalently, the reflection coefficients at the interfaces. During speech, the configu-
ration of the vocal tract tube changes continuously. But being a mechanical system, it
does so fairly slowly, and for short periods of time (of the order of 20–30 msec) it may
be assumed to maintain a fixed configuration. From each such short segment of speech,
a set of configuration parameters (e.g., reflection coefficients) may be extracted. This
set may be used to synthesize the speech segment.

The seismic problem is somewhat different. Here it is not the transmitted wave that
is experimentally accessible, but rather the overall reflected wave:

An impulsive input to the earth, such as a dynamite explosion near the surface,
will set up seismic elastic waves propagating downwards. As the various earth layers
are encountered, reflections will take place. Eventually each layer will be reverberating
and an overall reflected wave will be measured at the surface. On the basis of this
reflected wave, the layered structure (i.e., reflection coefficients, impedances, etc.) must
be extracted by deconvolution techniques. These are essentially identical to the linear
prediction methods.

In addition to geophysical and speech applications, this wave problem and the as-
sociated inverse problem of extracting the structure of the medium from the observed
(reflected or transmitted) response have a number of other applications. Examples in-
clude the probing of dielectric materials by electromagnetic waves, the study of the
optical properties of thin films, the probing of tissues by ultrasound, and the design
of broadband terminations of transmission lines. The mathematical analysis of such
wave propagation problems has been done more or less independently in each of these
application areas, and is well known dating back to the time of Stokes.
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In this type of wave propagation problem there are always two associated propa-
gating field quantities, the ratio of which is constant and equal to the corresponding
characteristic impedance of the propagation medium. Examples of these include the
electric and magnetic fields in the case of EM waves, the air pressure and particle vol-
ume velocity for sound waves, the stress and particle displacement for seismic waves,
and the voltage and current waves in the case of TEM transmission lines.

As a concrete example, we have chosen to present in some detail the case of EM
waves propagating in lossless dielectrics. The simplest and most basic scattering prob-
lem arises when there is a single interface separating two semi-infinite dielectrics of
characteristic impedances Z and Z′, as shown

where E+ and E− are the right and left moving electric fields in medium Z, and E ′+ and
E ′− are those in medium Z′. The arrows indicate the directions of propagation, the fields
are perpendicular to these directions. Matching the boundary conditions (i.e., continuity
of the tangential fields at the interface), gives the two equations:

E+ + E− = E ′+ + E ′− (continuity of electric field)

1

Z
(E+ − E−)= 1

Z′
(E′+ − E′−) (continuity of magnetic field)

Introducing the reflection and transmission coefficients,

ρ = Z
′ − Z
Z′ + Z , τ = 1+ ρ , ρ′ = −ρ , τ′ = 1+ ρ′ = 1− ρ (5.13.1)

the above equations can be written in a transmission matrix form[ E+
E−

]
= 1

τ

[
1 ρ
ρ 1

][ E ′+
E ′−

]
(5.13.2)

The flow of energy carried by these waves is given by the Poynting vector

P = 1

2
Re

[
(E+ + E−)∗ 1

Z
(E+ − E−)

]
= 1

2Z
(E∗+ E+ − E∗− E−) (5.13.3)

One consequence of the above matching conditions is that the total energy flow to
the right is preserved across the interface; that is,

1

2Z
(E∗+ E+ − E∗− E−)= 1

2Z′
(E ′∗+ E ′+ − E ′∗− E ′−) (5.13.4)

It proves convenient to absorb the factors 1/2Z and 1/2Z′ into the definitions for
the fields by renormalizing them as follows:[

E+
E−

]
= 1√

2Z

[ E+
E−

]
,

[
E′+
E′−

]
= 1√

2Z′

[ E ′+
E ′−

]

Then, Eq. (5.13.4) reads
E∗+E+ − E∗−E− = E′∗+ E′+ − E′∗− E′− (5.13.5)

and the matching equations (5.13.2) can be written in the normalized form[
E+
E−

]
= 1

t

[
1 ρ
ρ 1

][
E′+
E′−

]
, t =

√
1− ρ2 = √ττ′ (5.13.6)
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They may also be written in a scattering matrix form that relates the outgoing fields
to the incoming ones, as follows:[

E′+
E−

]
=

[
t ρ′

ρ t

][
E+
E′−

]
= S

[
E+
E′−

]
(5.13.7)

This is the most elementary scattering matrix of all, and ρ and t are the most elemen-
tary reflection and transmission responses. From these, the reflection and transmission
response of more complicated structures can be built up. In the more general case, we
have a dielectric structure consisting ofM slabs stacked together as shown in Fig. 5.13.

Fig. 5.13 Layered structure.

The media to the left and right in the figure are assumed to be semi-infinite. The
reflection and transmission responses (from the left, or from the right) of the structure
are defined as the responses of the structure to an impulse (incident from the left, or
from the right) as shown in Fig. 5.14.

Fig. 5.14 Reflection and transmission responses.

The corresponding scattering matrix is defined as

S =
[
T R′

R T′

]

and by linear superposition, the relationship between arbitrary incoming and outgoing
waves is

[
E′+
E−

]
=

[
T R′

R T′

][
E+
E′−

]

The inverse scattering problem that we pose is how to extract the detailed prop-
erties of the layered structure, such as the reflection coefficients ρ0, ρ1, . . . , ρM from
the knowledge of the scattering matrix S; that is, from observations of the reflection
response R or the transmission response T.
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Without loss of generality, we may assume the M slabs have equal travel time. We
denote the common one-way travel time by T1 and the two-way travel time by T2 = 2T1.
As an impulse δ(t) is incident from the left on interface M, there will be immediately
a reflected wave and a transmitted wave into mediumM. When the latter reaches inter-
face M − 1, part of it will be transmitted into medium M − 1, and part will be reflected
back towards interface M where it will be partially rereflected towards M − 1 and par-
tially transmitted to the left into medium M + 1, thus contributing towards the overall
reflection response. Since the wave had to travel to interfaceM−1 and back, this latter
contribution will occur at time T2. Similarly, another wave will return back to interface
M due to reflection from the second interfaceM− 2; this wave will return 2T2 seconds
later and will add to the contribution from the zig-zag path within medium M which
is also returning at 2T2, and so on. The timing diagram below shows all the possible
return paths up to time t = 3T2, during which the original impulse can only travel as
far as interfaceM − 3:

When we add the contributions of all the returned waves we see that the reflection
response will be a linear superposition of returned impulses

R(t)=
∞∑
k=0

Rkδ(t − kT2)

It has a Fourier transform expressible more conveniently as the z-transform

R(z)=
∞∑
k=0

Rkz−k , z = ejωT2 , (here,ω is in rads/sec)

We observe that R is periodic in frequencyω with period 2π/T2, which plays a role
analogous to the sampling frequency in a sample-data system. Therefore, it is enough
to specify R within the Nyquist interval [−π/T2,π/T2].

Next, we develop the lattice recursions that facilitate the solution of the direct and
the inverse scattering problems. Consider the mth slab and let E±m be the right/left
moving waves incident on the left side of themth interface. To relate them to the same
quantities E±m−1 incident on the left side of the (m − 1)st interface, first we use the
matching equations to “pass” to the other side of the mth interface and into the mth
slab, and then we propagate these quantities to reach the left side of the (m − 1)st
interface. This is shown below.
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The matching equations are:[
E+m
E−m

]
= 1

tm

[
1 ρm
ρm 1

][
E+′m
E−′m

]
, tm = (1− ρ2

m)1/2 (5.13.8)

Since the left-moving wave E−′m is the delayed replica of E−m−1 by T1 seconds, and
E+′m is the advanced replica of E+m−1 by T1 seconds, it follows that

E+′m = z1/2E+m−1 , E−′m = z−1/2E−m−1

or, in matrix form [
E+′m
E−′m

]
=

[
z1/2 0
0 z−1/2

][
E+m−1

E−m−1

]
(5.13.9)

where the variable z−1 was defined above and represents the two-way travel time delay,
while z−1/2 represents the one-way travel time delay. Combining the matching and
propagation equations (5.13.8) and (5.13.9), we obtain the desired relationship between
E±m and E±m−1: [

E+m
E−m

]
= z

1/2

tm

[
1 ρmz−1

ρm z−1

][
E+m−1

E−m−1

]
(5.13.10)

Or, written in a convenient vector notation

Em(z)= ψm(z)Em−1(z) (5.13.11)

where we defined

Em(z)=
[
E+m(z)
E−m(z)

]
, ψm(z)= z

1/2

tm

[
1 ρmz−1

ρm z−1

]
(5.13.12)

The “match-and-propagate” transition matrixψm(z) has two interesting properties;
namely, defining ψ̄m(z)= ψm(z−1)

ψ̄m(z)TJ3ψm(z)= J3 , J3 =
[

1 0
0 −1

]
(5.13.13)

ψ̄m(z)= J1ψm(z)J1 , J1 =
[

0 1
1 0

]
(5.13.14)

where J1, J3 are recognized as two of the three Pauli spin matrices. From Eq. (5.3.13),
we have with Ē±m(z)= E±m(z−1):

Ē+mE+m − Ē−mE−m = ĒTmJ3Em = ĒTm−1ψ̄TmJ3ψmEm−1 = ĒTm−1J3Ēm−1

= Ē+m−1E
+
m−1 − Ē−m−1E

−
m−1

(5.13.15)

which is equivalent to energy conservation, according to Eq. (5.13.5). The second prop-
erty, Eq. (5.13.14), expresses time-reversal invariance and allows the construction of a
second, linearly independent, solution of the recursive equations (5.13.11), Using the
property J2

1 = I, we have

Êm = J1Ēm =
[
Ē−m
Ē+m

]
= J1ψ̄mĒm−1 = J1ψ̄mJ1J1Ēm−1 = ψmÊm−1 (5.13.16)

The recursions (5.13.11) may be iterated now down to m = 0. By an additional
boundary match, we may pass to the right side of interfacem = 0:

Em = ψmψm−1 · · ·ψ1E0 = ψmψm−1 · · ·ψ1ψ0E′0



204 5. Linear Prediction

where we defined ψ0 by

ψ0 = 1

t0

[
1 ρ0

ρ0 1

]
or, more explicitly[

E+m
E−m

]
= zm/2

tmtm−1 · · · t1t0

[
1 ρmz−1

ρm z−1

]
· · ·

[
1 ρ1z−1

ρ1 z−1

][
1 ρ0

ρ0 1

][
E+′0

E−′0

]
(5.13.17)

To deal with this product of matrices, we define[
Am Cm
Bm Dm

]
=

[
1 ρmz−1

ρm z−1

]
· · ·

[
1 ρ1z−1

ρ1 z−1

][
1 ρ0

ρ0 1

]
(5.13.18)

where Am,Cm,Bm,Dm are polynomials of degree m in the variable z−1. The energy
conservation and time-reversal invariance properties of the ψm matrices imply similar
properties for these polynomials. Writing Eq. (5.13.18) in terms of the ψms, we have[

Am Cm
Bm Dm

]
= z−m/2σmψmψm−1 · · ·ψ1ψ0

where we defined the quantity

σm = tmtm−1 · · · t1t0 =
m∏
i=0

(1− ρ2
i )

1/2 (5.13.19)

Property (5.13.13) implies the same for the above product of matrices; that is, with
Ām(z)= Am(z−1), etc.,[

Ām C̄m
B̄m D̄m

][
1 0
0 −1

][
Am Cm
Bm Dm

]
=

[
1 0
0 −1

]
σ2
m

which implies that the quantity Ām(z)Am(z)−B̄m(z)Bm(z) is independent of z:

Ām(z)Am(z)−B̄m(z)Bm(z)= σ2
m (5.13.20)

Property (5.13.14) implies that Cm and Dm are the reverse polynomials BRm and ARm,
respectively; indeed[

ARm CRm
BRm DRm

]
= z−m

[
Ām C̄m
B̄m D̄m

]
= z−mzm/2σmψ̄m · · · ψ̄1ψ̄0

= z−m/2σmJ1(ψm · · ·ψ0)J1 = J1

[
Am Cm
Bm Dm

]
J1

=
[

0 1
1 0

][
Am Cm
Bm Dm

][
0 1
1 0

]
=

[
Dm Bm
Cm Am

]
(5.13.21)

from which it follows thatCm(z)= BRm(z) andDm(z)= ARm(z). The definition (5.13.18)
implies also the recursion[

Am BRm
Bm ARm

]
=

[
1 ρmz−1

ρm z−1

][
Am−1 BRm−1

Bm−1 ARm−1

]

Therefore each column of the ABCD matrix satisfies the same recursion. To sum-
marize, we have[

Am(z) BRm(z)
Bm(z) ARm(z)

]
=

[
1 ρmz−1

ρm z−1

]
· · ·

[
1 ρ1z−1

ρ1 z−1

][
1 ρ0

ρ0 1

]
(5.13.22)
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with the lattice recursion[
Am(z)
Bm(z)

]
=

[
1 ρmz−1

ρm z−1

][
Am−1(z)
Bm−1(z)

]
(5.13.23)

and the property (5.13.20). The lattice recursion is initialized atm = 0 by:

A0(z)= 1 , B0(z)= ρ0 , or,

[
A0(z) BR0 (z)
B0(z) AR0 (z)

]
=

[
1 ρ0

ρ0 1

]
(5.13.24)

Furthermore, it follows from the lattice recursion (5.13.23) that the reflection coeffi-
cients ρm always appear in the first and last coefficients of the polynomials Am(z) and
Bm(z), as follows

am(0)= 1 , am(m)= ρ0ρm , bm(0)= ρm , bm(m)= ρ0 (5.13.25)

Eq. (5.13.17) for the field components reads now[
E+m
E−m

]
= z

m/2

σm

[
Am BRm
Bm ARm

][
E+′0

E−′0

]

Settingm =M, we find the relationship between the fields incident on the dielectric
slab structure from the left to those incident from the right:[

E+M
E−M

]
= z

M/2

σM

[
AM BRM
BM ARM

][
E+′0

E−′0

]
(5.13.26)

All the multiple reflections and reverberatory effects of the structure are buried in
the transition matrix [

AM BRM
BM ARM

]
In reference to Fig. 5.14, the reflection and transmission responses R,T,R′, T′ of

the structure can be obtained from Eq. (5.13.26) by noting that[
1
R

]
= z

M/2

σM

[
AM BRM
BM ARM

][
T
0

]
,

[
0
T′

]
= z

M/2

σM

[
AM BRM
BM ARM

][
R′

1

]

which may be combined into one equation:[
1 0
R T′

]
= z

M/2

σM

[
AM BRM
BM ARM

][
T R′

0 1

]

that can be written as follows:

zM/2

σM

[
AM BRM
BM ARM

]
=

[
1 0
R T′

][
T R′

0 1

]−1

=
[

1 0
R 1

][
T−1 0

0 T′

][
1 −R′
0 1

]

Solving these for the reflection and transmission responses, we find:

R(z)= BM(z)
AM(z)

, T(z)= σMz
−M/2

AM(z)

R′(z)= −B
R
M(z)
AM(z)

, T′(z)= σMz
−M/2

AM(z)

(5.13.27)
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Note that T(z)= T′(z). Since on physical grounds the transmission response T(z)
must be a stable and causal z-transform, it follows that necessarily the polynomial
AM(z)must be a minimum-phase polynomial. The overall delay factor z−M/2 in T(z) is
of no consequence. It just means that before anything can be transmitted through the
structure, it must traverse allM slabs, each with a travel time delay of T1 seconds; that
is, with overall delay ofMT1 seconds.

Let Rm−1(z) and Tm−1(z) be the reflection and transmission responses based on
m − 1 layers. The addition of one more layer will change the responses to Rm(z) and
Tm(z). Using the lattice recursions, we may derive a recursion for these responses:

Rm(z)= Bm(z)Am(z)
= ρmAm−1(z)+z−1Bm−1(z)
Am−1(z)+ρmz−1Bm−1(z)

Dividing numerator and denominator by Am−1(z) we obtain

Rm(z)= ρm + z−1Rm−1(z)
1+ ρmz−1Rm−1(z)

(5.13.28)

It describes the effect of adding a layer. Expanding it in a power series, we have

Rm(z)= ρm + (1− ρ2
m)

[
z−1Rm−1(z)

]− (1− ρ2
m)ρm

[
z−1Rm−1(z)

]2 + · · ·
It can be verified easily that the various terms in this sum correspond to the multiple

reflections taking place within themth layer, as shown below:

The first term in the expansion is always ρm; that is, ρm = Rm(∞). Thus, from the
knowledge of Rm(z) we may extract ρm. With ρm known, we may invert Eq. (5.13.28)
to get Rm−1(z) from which we can extract ρm−1; and so on, we may extract the series
of reflection coefficients. The inverse of Eq. (5.13.28), which describes the effect of
removing a layer, is

Rm−1(z)= z Rm(z)−ρm
1− ρmRm(z) (5.13.29)

Up to a difference in the sign of ρm, this is recognized as the Schur recursion
(5.10.25). It provides a nice physical interpretation of that recursion; namely, the Schur
functions represent the overall reflection responses at the successive layer interfaces,
which on physical grounds must be stable, causal, and bounded |Rm(z)| ≤ 1 for all z in
their region of convergence that includes, at least, the unit circle and all the points out-
side it. We may also derive a recursion for the transmission responses, which requires
the simultaneous recursion of Rm(z):

Tm(z)= tmz−1/2Tm−1(z)
1+ ρmz−1Rm−1(z)

, Tm−1(z)= z1/2 tmTm(z)
1− ρmRm(z) (5.13.30)

The dynamic predictive deconvolution method is an alternative method of extracting
the sequence of reflection coefficients and is discussed below.

The equations (5.13.27) for the scattering responses R,T,R′, T′ imply the unitarity
of the scattering matrix S given by

S =
[
T R′

R T′

]
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that is,
S̄(z)TS(z)= S(z−1)TS(z)= I (5.13.31)

where I is the 2×2 unit matrix. On the unit circle z = ejωT2 the scattering matrix
becomes a unitary matrix: S(ω)†S(ω)= I. Component-wise, Eq. (5.13.3 1 ) becomes

T̄T + R̄R = T̄′T′ + R̄′R′ = 1 , T̄R′ + R̄T′ = 0 (5.13.32)

Robinson and Treitel’s dynamic predictive deconvolution method [59] of solving the
inverse scattering problem is based on the above unitarity equation. In the inverse
problem, it is required to extract the set of reflection coefficients from measurements of
either the reflection response R or the transmission response T. In speech processing it
is the transmission response that is available. In geophysical applications, or in studying
the reflectivity properties of thin films, it is the reflection response that is available. The
problem of designing terminations of transmission lines also falls in the latter category.
In this case, an appropriate termination is desired that must have a specified reflection
response R(z); for example, to be reflectionless over a wide band of frequencies about
some operating frequency.

The solution of both types of problems follows the same steps. First, from the
knowledge of the reflection response R(z), or the transmission response T(z), the
spectral function of the structure is defined:

Φ(z)= 1−R(z)R̄(z)= T(z)T̄(z)= σ2
M

AM(z)ĀM(z)
(5.13.33)

This is recognized as the power spectrum of the transmission response, and it is of
the autoregressive type. Thus, linear prediction methods can be used in the solution.

In the time domain, the autocorrelation lags φ(k) of the spectral function are ob-
tained from the sample autocorrelations of the reflection sequence, or the transmission
sequence:

φ(k)= δ(k)−C(k)= D(k) (5.13.34)

whereC(k) andD(k) are the sample autocorrelations of the reflection and transmission
time responses:

C(k)=
∑
n
R(n+ k)R(n) , D(k)=

∑
n
T(n+ k)T(n) (5.13.35)

In practice, only a finite record of the reflection (or transmission) sequence will be
available, say {R(0),R(1), . . . , R(N − 1)}. Then, an approximation to C(k) must be
used, as follows:

C(k)=
N−1−k∑
n=0

R(n+ k)R(n) , k = 0,1, . . . ,M (5.13.36)

The polynomial AM(z) may be recovered from the knowledge of the firstM lags of
the spectral function; that is, {φ(0),φ(1), . . . ,φ(M)}. The determining equations for
the coefficients of AM(z) are precisely the normal equations of linear prediction. In the
present context, they may be derived directly by noting that Φ(z) is a stable spectral
density and is already factored into its minimum-phase factors in Eq. (5.13.33). Thus,
writing

Φ(z)AM(z)= σ2
M

AM(z−1)
it follows that the right-hand side is expandable in positive powers of z; the negative
powers of z in the left-hand side must be set equal to zero. This gives the normal
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equations:⎡⎢⎢⎢⎢⎢⎢⎢⎣

φ(0) φ(1) φ(2) · · · φ(M)
φ(1) φ(0) φ(1) · · · φ(M − 1)
φ(2) φ(1) φ(0) · · · φ(M − 2)

...
...

...
...

φ(M) φ(M − 1) φ(M − 2) · · · φ(0)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
aM(1)
aM(2)

...
aM(M)

⎤⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

σ2
M
0
0
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (5.13.37)

which can be solved efficiently using Levinson’s algorithm. Having obtained AM(z)
and noting the BM(z)= AM(z)R(z), the coefficients of the polynomial BM(z) may be
recovered by convolution:

bM(n)=
n∑
m=0

aM(n−m)R(m) , n = 0,1, . . . ,M (5.13.38)

Having obtained both AM(z) and BM(z) and noting that ρM = bM(0), the lattice
recursion (5.13.23) may be inverted to recover the polynomials AM−1(z) and BM−1(z)
as well as the next reflection coefficient ρM−1 = bM−1(0), and so on. The inverse of the
lattice recursion matrix is[

1 ρmz−1

ρm z−1

]−1

= 1

1− ρ2
m

[
1 −ρm

−ρmz z

]

Therefore, the backward recursion becomes:

ρm = bm(0) ,
[
Am−1(z)
Bm−1(z)

]
= 1

1− ρ2
m

[
1 −ρm

−ρmz z

][
Am(z)
Bm(z)

]
(5.13.39)

In this manner, all the reflection coefficients {ρ0, ρ1, . . . , ρM} can be extracted. The
computational algorithm is summarized as follows:

1. Measure R(0),R(1), . . . , R(N − 1).
2. Select a reasonable value for the number of slabsM.

3. Compute the M + 1 sample autocorrelation lags C(0),C(1), . . . , C(M) of the re-
flection response R(n), using Eq. (5.13.36).

4. Compute φ(k)= δ(k)−C(k), k = 0,1, . . . ,M.

5. Using Levinson’s algorithm, solve the normal equations (5.13.37) for the coeffi-
cients of AM(z).

6. Convolve AM(z) with R(z) to find BM(z).
7. Compute ρM = bM(0) and iterate the backward recursion (5.13.39) fromm =M

down tom = 0.

The subroutine dpd (see Appendix B) is an implementation of the dynamic predictive
deconvolution procedure. The inputs to the subroutine are N samples of the reflection
response {R(0),R(1), . . . , R(N − 1)} and the number of layers M. The outputs are
the lattice polynomials Ai(z) and Bi(z), for i = 0,1, . . . ,M, arranged in the two lower-
triangular matricesA and B whose rows hold the coefficients of these polynomials; that
is, A(i, j)= ai(j), or

Ai(z)=
i∑
j=0

A(i, j)z−j

and similarly for Bi(z). The subroutine invokes the routine lev to solve the normal
equations (5.13.34). The forward scattering problem is implemented by the subroutine
scatter, whose inputs are the set of reflection coefficients {ρ0, ρ1, . . . , ρM} and whose
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outputs are the lattice polynomials Ai(z) and Bi(z), for i = 0,1, . . . ,M, as well as a
pre-specified number N of reflection response samples {R(0),R(1), . . . , R(N − 1)}. It
utilizes the forward lattice recursion (5.13.23) to obtain the lattice polynomials, and
then computes the reflection response samples by taking the inverse z-transform of Eq.
(5.13.27).

Next, we present a number of deconvolution examples simulated by means of the
routines scatter and dpd. In each case, we specified the five reflection coefficients of a
structure consisting of four layers. Using scatter we generated the exact lattice polyno-
mials whose coefficients are arranged in the matrices A and B, and also generated 16
samples of the reflection response R(n), n = 0,1, . . . ,15. These 16 samples were sent
through the dpd routine to extract the lattice polynomials A and B.

The first figure of each example displays a table of the reflection response samples
and the exact and extracted polynomials. Note that the first column of the matrix B
is the vector of reflection coefficients, according to Eq. (5.13.25). The remaining two
graphs of each example show the reflection response R in the time domain and in the
frequency domain. Note that the frequency response is plotted only over one Nyquist
interval [0,2π/T2], and it is symmetric about the Nyquist frequencyπ/T2. Figures 5.15
through 5.17 correspond to the case of equal reflection coefficients {ρ0, ρ1, ρ2, ρ3, ρ4} =
{0.5,0.5,0.5,0.5,0.5}.

Aexact =

⎡⎢⎢⎢⎢⎢⎢⎣
1.0000 0 0 0 0
1.0000 0.2500 0 0 0
1.0000 0.5000 0.2500 0 0
1.0000 0.7500 0.5625 0.2500 0
1.0000 1.0000 0.9375 0.6250 0.2500

⎤⎥⎥⎥⎥⎥⎥⎦

Aextract =

⎡⎢⎢⎢⎢⎢⎢⎣
1.0000 0 0 0 0
1.0000 0.2509 0 0 0
1.0000 0.5009 0.2510 0 0
1.0000 0.7509 0.5638 0.2508 0
1.0000 1.0009 0.9390 0.6263 0.2504

⎤⎥⎥⎥⎥⎥⎥⎦

Bexact =

⎡⎢⎢⎢⎢⎢⎢⎣
0.5000 0 0 0 0
0.5000 0.5000 0 0 0
0.5000 0.6250 0.5000 0 0
0.5000 0.7500 0.7500 0.5000 0
0.5000 0.8750 1.0313 0.8750 0.5000

⎤⎥⎥⎥⎥⎥⎥⎦

Bextract =

⎡⎢⎢⎢⎢⎢⎢⎣
0.5010 0 0 0 0
0.5000 0.5010 0 0 0
0.5000 0.6255 0.5010 0 0
0.5000 0.7505 0.7510 0.5010 0
0.5000 0.8755 1.0323 0.8764 0.5010

⎤⎥⎥⎥⎥⎥⎥⎦

k R(k)
0 0.5000
1 0.3750
2 0.1875
3 0.0234
4 −0.0586
5 −0.1743
6 0.1677
7 0.0265
8 −0.0601
9 −0.0259

10 0.0238
11 0.0314
12 −0.0225
13 −0.0153
14 0.0109
15 0.0097

Fig. 5.15 Reflection response and lattice polynomials.

In Figs. 5.18 through 5.20 the reflection coefficients have been tapered somewhat
at the ends (windowed) and are {0.3,0.4,0.5,0.4,0.3}. Note the effect of tapering on
the lobes of the reflection frequency response. Figures 5.21 through 5.23 correspond
to the set of reflection coefficients {0.1,0.2,0.3,0.2,0.1}. Note the broad band of fre-
quencies about the Nyquist frequency for which there is very little reflection. In con-
trast, the example in Figs. 5.24 through 5.26 exhibits high reflectivity over a broad
band of frequencies about the Nyquist frequency. Its set of reflection coefficients is
{0.5,−0.5,0.5,−0.5,0.5}.
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Fig. 5.16 and Fig. 5.17 Reflection responses in the time and frequency domains.

Aexact =

⎡⎢⎢⎢⎢⎢⎢⎣
1.0000 0 0 0 0
1.0000 0.1200 0 0 0
1.0000 0.3200 0.1500 0 0
1.0000 0.5200 0.3340 0.1200 0
1.0000 0.6400 0.5224 0.2760 0.0900

⎤⎥⎥⎥⎥⎥⎥⎦

Aextract =

⎡⎢⎢⎢⎢⎢⎢⎣
1.0000 0 0 0 0
1.0000 0.1200 0 0 0
1.0000 0.3200 0.1500 0 0
1.0000 0.5200 0.3340 0.1200 0
1.0000 0.6400 0.5224 0.2760 0.0900

⎤⎥⎥⎥⎥⎥⎥⎦

Bexact =

⎡⎢⎢⎢⎢⎢⎢⎣
0.3000 0 0 0 0
0.4000 0.3000 0 0 0
0.5000 0.4600 0.3000 0 0
0.4000 0.6280 0.5200 0.3000 0
0.3000 0.5560 0.7282 0.5560 0.3000

⎤⎥⎥⎥⎥⎥⎥⎦

Bextract =

⎡⎢⎢⎢⎢⎢⎢⎣
0.3000 0 0 0 0
0.4000 0.3000 0 0 0
0.5000 0.4600 0.3000 0 0
0.4000 0.6280 0.5200 0.3000 0
0.3000 0.5560 0.7282 0.5560 0.3000

⎤⎥⎥⎥⎥⎥⎥⎦

k R(k)
0 0.3000
1 0.3640
2 0.3385
3 0.0664
4 −0.0468
5 −0.1309
6 0.0594
7 0.0373
8 −0.0146
9 −0.0148

10 0.0014
11 0.0075
12 −0.0001
13 −0.0029
14 −0.0003
15 0.0010

Fig. 5.18 Reflection response and lattice polynomials.

In this section we have discussed the inverse problem of unraveling the structure
of a medium from the knowledge of its reflection response. The connection of the dy-
namic predictive deconvolution method to the conventional inverse scattering meth-
ods based on the Gelfand-Levitan-Marchenko approach [139] has been discussed in
[128,140,141]. The lattice recursions characteristic of the wave propagation problem
were derived as a direct consequence of the boundary conditions at the interfaces be-
tween media, whereas the lattice recursions of linear prediction were a direct conse-
quence of the Gram-Schmidt orthogonalization process and the minimization of the
prediction-error performance index. Is there a deeper connection between these two
problems [76,79,80,90–92,142,143]? One notable result in this direction has been to
show that the Cholesky factorization of Toeplitz or near-Toeplitz matrices via the Schur
algorithm can be cast in a wave propagation model and derived as a simple consequence
of energy conservation [87].
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Fig. 5.19 and Fig. 5.20 Reflection responses in the time and frequency domains.

Aexact =

⎡⎢⎢⎢⎢⎢⎢⎣
1.0000 0 0 0 0
1.0000 0.0200 0 0 0
1.0000 0.0800 0.0300 0 0
1.0000 0.1400 0.0712 0.0200 0
1.0000 0.1600 0.1028 0.0412 0.0100

⎤⎥⎥⎥⎥⎥⎥⎦

Aextract =

⎡⎢⎢⎢⎢⎢⎢⎣
1.0000 0 0 0 0
1.0000 0.0200 0 0 0
1.0000 0.0800 0.0300 0 0
1.0000 0.1400 0.0712 0.0200 0
1.0000 0.1600 0.1028 0.0412 0.0100

⎤⎥⎥⎥⎥⎥⎥⎦

Bexact =

⎡⎢⎢⎢⎢⎢⎢⎣
0.1000 0 0 0 0
0.2000 0.1000 0 0 0
0.3000 0.2060 0.1000 0 0
0.2000 0.3160 0.2120 0.1000 0
0.1000 0.2140 0.3231 0.2140 0.1000

⎤⎥⎥⎥⎥⎥⎥⎦

Bextract =

⎡⎢⎢⎢⎢⎢⎢⎣
0.1000 0 0 0 0
0.2000 0.1000 0 0 0
0.3000 0.2060 0.1000 0 0
0.2000 0.3160 0.2120 0.1000 0
0.1000 0.2140 0.3231 0.2140 0.1000

⎤⎥⎥⎥⎥⎥⎥⎦

k R(k)
0 0.1000
1 0.1980
2 0.2812
3 0.1445
4 0.0388
5 −0.0346
6 −0.0072
7 0.0017
8 0.0015
9 0.0002

10 −0.0002
11 −0.0001
12 0.0000
13 0.0000
14 0.0000
15 −0.0000

Fig. 5.21 Reflection response and lattice polynomials.

5.14 Least-Squares Waveshaping and Spiking Filters

In linear prediction, the three practical methods of estimating the prediction error filter
coefficients were all based on replacing the ensemble mean-square minimization crite-
rion by a least-squares criterion based on time averages. Similarly, the more general
Wiener filtering problem may be recast in terms of such time averages. A practical for-
mulation, which is analogous to the Yule-Walker or autocorrelation method, is as follows
[59,60,95,144]. Given a record of available data

y0, y1, . . . , yN

find the best linear FIR filter of orderM

h0, h1, . . . , hM
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Fig. 5.22 and Fig. 5.23 Reflection responses in the time and frequency domains.

Aexact =

⎡⎢⎢⎢⎢⎢⎢⎣
1.0000 0 0 0 0
1.0000 −0.2500 0 0 0
1.0000 −0.5000 0.2500 0 0
1.0000 −0.7500 0.5625 −0.2500 0
1.0000 −1.0000 0.9375 −0.6250 0.2500

⎤⎥⎥⎥⎥⎥⎥⎦

Aextract =

⎡⎢⎢⎢⎢⎢⎢⎣
1.0000 0 0 0 0
1.0000 −0.2509 0 0 0
1.0000 −0.5009 0.2510 0 0
1.0000 −0.7509 0.5638 −0.2508 0
1.0000 −1.0009 0.9390 −0.6263 0.2504

⎤⎥⎥⎥⎥⎥⎥⎦

Bexact =

⎡⎢⎢⎢⎢⎢⎢⎣
0.5000 0 0 0 0
−0.5000 0.5000 0 0 0

0.5000 −0.6250 0.5000 0 0
−0.5000 0.7500 −0.7500 0.5000 0

0.5000 −0.8750 1.0313 −0.8750 0.5000

⎤⎥⎥⎥⎥⎥⎥⎦

Bextract =

⎡⎢⎢⎢⎢⎢⎢⎣
0.5010 0 0 0 0
−0.5000 0.5010 0 0 0

0.5000 −0.6255 0.5010 0 0
−0.5000 0.7505 −0.7510 0.5010 0

0.5000 −0.8755 1.0323 −0.8764 0.5010

⎤⎥⎥⎥⎥⎥⎥⎦

k R(k)
0 0.5000
1 −0.3750
2 0.1875
3 −0.0234
4 −0.0586
5 0.1743
6 0.1677
7 −0.0265
8 −0.0601
9 0.0259

10 0.0238
11 −0.0314
12 −0.0225
13 0.0153
14 0.0109
15 −0.0097

Fig. 5.24 Reflection response and lattice polynomials.

which reshapes yn into a desired signal xn, specified in terms of the samples:

x0, x1, . . . , xN+M

where for consistency of convolution, we assumed we know N +M + 1 samples of the
desired signal. The actual convolution output of the waveshaping filter will be:

x̂n =
min(n,M)∑

m=max(0,n−N)
hmxn−m , 0 ≤ n ≤ N +M (5.14.1)

and the estimation error:

en = xn − x̂n , 0 ≤ n ≤ N +M (5.14.2)
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Fig. 5.25 and Fig. 5.26 Reflection responses in the time and frequency domains.

As the optimality criterion, we choose the least-squares criterion:

E =
N+M∑
n=0

e2
n = min (5.14.3)

The optimal filter weights hm are selected to minimize E. It is convenient to recast
the above in a compact matrix form. Define the (N+M+1)×(M+1) convolution data
matrix Y, the (M+1)×1 vector of filter weights h, the (N+M+1)×1 vector of desired
samples x, (and estimates x̂ and estimation errors e), as follows:

Y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0 0 0 · · · 0
y1 y0 0 · · · 0
y2 y1 y0 · · · 0
...

...
...

...
yN yN−1 yN−2 · · · yN−M
0 yN yN−1 · · · yN−M+1

0 0 yN · · · yN−M+2

...
...

...
...

0 0 0 · · · yN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, h =

⎡⎢⎢⎢⎢⎢⎣
h0

h1

...
hM

⎤⎥⎥⎥⎥⎥⎦ , x =

⎡⎢⎢⎢⎢⎢⎣
x0

x1

...
xN+M

⎤⎥⎥⎥⎥⎥⎦ (5.14.4)

Equations (5.14.1) through (5.14.3) now become

x̂ = Yh , e = x− x̂ , E = eTe (5.14.5)

Minimizing E with respect to the weight vector h results in the orthogonality equations:

YTe = YT(x−Yh)= 0 (5.14.6)

which are equivalent to the normal equations:

YTYh = YTx (5.14.7)

Solving for h, we find
h = (YTY)−1YTx = R−1r (5.14.8)

where the quantities
R = YTY , r = YTx (5.14.9)

may be recognized (see Section 1.10) as the (M + 1)×(M + 1) autocorrelation matrix
formed by the sample autocorrelations R̂yy(0), R̂yy(1), . . . R̂yy(M) of yn, and as the
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(M+1)×1 vector of sample cross-correlations R̂xy(0), R̂xy(1), . . . R̂xy(M) between the
desired and the available vectors xn and yn. We have already used this expression for
the weight vector h in the example of Section 5.11. Here we have justified it in terms
of the least-squares criterion (5.14.3). The subroutine firw may be used to solve for the
weights (5.14.8) and, if so desired, to give the corresponding lattice realization. The
actual filter output x̂ is expressed as

x̂ = Yh = YR−1YTx = Px (5.14.10)

where
P = YR−1YT = Y(YTY)−1YT (5.14.11)

The error vector becomes e = (I − P)x. The “performance” matrix P is a projection
matrix, and thus, so is (I − P). Then, the error square becomes

E = eTe = xT(I − P)2x = xT(I − P)x (5.14.12)

The (N+M+1)×(N+M+1)matrix P has trace equal toM+1, as can be checked
easily. Since its eigenvalues as a projection matrix are either 0 or 1, it follows that in
order for the sum of all the eigenvalues (the trace) to be equal to M + 1, there must
necessarily be M + 1 eigenvalues that are equal to 1, and N eigenvalues equal to 0.
Therefore, the matrix P has rankM+ 1, and if the desired vector x is selected to be any
of theM+1 eigenvectors belonging to eigenvalue 1, the corresponding estimation error
will be zero.

Among all possible waveshapes that may be chosen for the desired vector x, of
particular importance are the spikes, or impulses. In this case, x is a unit impulse, say
at the origin; that is, xn = δn. The convolution x̂n = hn ∗ yn of the corresponding filter
with yn is the best least-squares approximation to the unit impulse. In other words, hn is
the best least-squares inverse filter to yn that attempts to reshape, or compress, yn into
a unit impulse. Such least squares inverse filters are used extensively in deconvolution
applications. More generally. the vector x may be chosen to be any one of the unit
vectors

x = ui =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...
0
1
0
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
← ith slot , i = 0,1, . . . ,N +M (5.14.13)

which corresponds to a unit impulse occurring at the ith time instant instead of at the
origin; that is, xn = δ(n− i). The actual output from the spiking filter is given by

x̂ = Px = Pui = ith column of P (5.14.14)

Thus, the ith column of the matrix P is the output of the ith spiking filter which
attempts to compress yn into a spike with i delays. The corresponding ith filter is
h = R−1YTui. Therefore, the columns of the matrix

H = R−1YT = (YTY)−1YT (5.14.15)

are all the optimal spiking filters. The estimation error of the ith filter is

Ei = uTi (I − P)ui = 1− Pii (5.14.16)
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where Pii, is the ith diagonal element of P. Since the delay imay be positioned anywhere
from i = 0 to i = N +M, there are N +M + 1 such spiking filters, each with error Ei.
Among these, there will be one that has the optimal delay i which corresponds to the
smallest of the Eis; or, equivalently, to the maximum of the diagonal elements Pii.

The design procedure for least-squares spiking filters for a given finite signal yn,
n = 0,1, . . . ,N − 1 is summarized as follows:

1. Compute R = YTY.

2. Compute the inverse R−1 (preferably by the Levinson recursion).

3. Compute H = R−1YT = all the spiking filters.

4. Compute P = YH = YR−1YT = all spiking filter outputs.

5. Select that column i of P for which Pii is the largest.

If the Levinson-Cholesky algorithm is used to compute the inverse R−1, this design
procedure becomes fairly efficient. An implementation of the procedure is given by the
subroutine spike. The inputs to the subroutine are the N + 1 samples {y0, y1, . . . , yN},
the desired order M of the spiking filter, and a so-called “prewhitening” or Backus-
Gilbert parameter ε, which will be explained below. The outputs of the subroutine are
the matrices P and H.

To explain the role of the parameter ε, let us go back to the waveshaping problem.
When the data sequence yn to be reshaped into xn is inaccurately known—if, for example,
it has been contaminated by white noise vn—the least-squares minimization criterion
(5.14.3) can be extended slightly to accomplish the double task of (1) producing the
best estimate of xn and (2) reducing the noise at the output of the filter hn as much as
possible.

The input to the filter is the noisy sequence yn+vn and its output is hn∗yn+hn∗
vn = x̂n + un, where we set un = hn ∗ vn. The term un represents the filtered noise.
The minimization criterion (5.14.3) may be replaced by

E =
∑
n
e2
n + λE[u2

n]= min (5.14.17)

where λ is a positive parameter which can be chosen by the user. Large λ emphasizes
large reduction of the output noise, but this is done at the expense of resolution; that is,
at the expense of obtaining a very good estimate. On the other hand, small λ emphasizes
higher resolution but with lesser noise reduction. This tradeoff between resolution and
noise reduction is the basic property of this performance index. Assuming that vn is
white with variance σ2

v , we have

E[u2
n]= σ2

v

M∑
n=0

h2
n = σ2

v hTh

Thus, Eq. (5.14.17) may be written as

E = eTe+ λσ2
v hTh = min (5.14.18)

Its minimization with respect to h gives the normal equations:

(YTY + λσ2
v I)h = YTx (5.14.19)

from which it is evident that the diagonal of YTY is shifted by an amount λσ2
v ; that is,

R̂yy(0)−→ R̂yy(0)+λσ2
v ≡ (1+ ε)R̂yy(0) , ε = λσ2

v

R̂yy(0)
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In practice, εmay be taken to be a few percent or less. It is evident from Eq. (5.14.19)
that one beneficial effect of the parameter ε is the stabilization of the inverse of the
matrix YTY + λσ2

v I.
The main usage of spiking filters is in deconvolution problems [59,60,95,144–146],

where the desired and the available signals xn and yn are related to each other by the
convolutional relationship

yn = fn ∗ xn =
∑
m
fmxn−m (5.14.20)

where fn is a “blurring” function which is assumed to be approximately known. The ba-
sic deconvolution problem is to recover xn from yn if fn is known. For example, yn may
represent the image of an object xn recorded through an optical system with a point-
spread function fn. Or, yn might represent the recorded seismic trace arising from the
excitation of the layered earth by an impulsive waveform fn (the source wavelet) which
is convolved with the reflection impulse response xn of the earth (in the previous sec-
tion xn was denoted by Rn.) If the effect of the source wavelet fn can be “deconvolved
away,” the resulting reflection sequence xn may be subjected to the dynamic predictive
deconvolution procedure to unravel the earth structure. Or, fn may represent the im-
pulse response of a channel, or a magnetic recording medium, which broadens and blurs
(intersymbol interference) the desired message xn.

The least-squares inverse spiking filters offer a way to solve the deconvolution prob-
lem: Simply design a least-squares spiking filter hn corresponding to the blurring func-
tion fn; that is, hn ∗ fn � δn, in the least-squares sense. Then, filtering yn through hn
will recover the desired signal xn:

x̂n = hn ∗ yn = (hn ∗ fn)∗xn � δn ∗ xn = xn (5.14.21)

If the ith spiking filter is used, which compresses fn into an impulse with i delays,
hn ∗ fn � δ(n− i), then the desired signal xn will be recovered with a delay of i units
of time.

This and all other approaches to deconvolution work well when the data yn are not
noisy. In presence of noise, Eq. (5.14.20) becomes

yn = fn ∗ xn + vn (5.14.22)

where vn may be assumed to be zero-mean white noise of variance σ2
v . Even if the

blurring function fn is known exactly and a good least-squares inverse filter hn can be
designed, the presence of the noise term can distort the deconvolved signal beyond
recognition. This may be explained as follows. Filtering yn through the inverse filter hn
results in

hn ∗ yn = (hn ∗ fn)∗xn + hn ∗ vn � xn + un
where un = hn ∗ vn is the filtered noise. Its variance is

E[u2
n]= σ2

v hTh = σ2
v

M∑
n=0

h2
n

which, depending on the particular shape of hn may be much larger than the original
variance σ2

v . This happens, for example, when fn consists mainly of low frequencies.
For hn to compress fn into a spike with a high frequency content, the impulse response
hn itself must be very spiky, which can result in values for hTh which are greater than
one.

To combat the effects of noise, the least-squares design criterion for h must be
changed by adding to it a term λE[u2

n] as was done in Eq. (5.14.17). The modified



5.14. Least-Squares Waveshaping and Spiking Filters 217

design criterion is then

E =
∑
n
(δn − hn ∗ fn)2+λσ2

v

M∑
n=0

h2
n

which effectively amounts to changing the autocorrelation lag R̂ff (0) into (1+ε)R̂ff (0).
The first term in this performance index tries to produce a good inverse filter; the second
term tries to minimize the output power of the noise after filtering by the deconvolu-
tion filter hn. Note that conceptually this index is somewhat different from that of Eq.
(5.14.17), because now vn represents the noise in the data yn whereas there vn repre-
sented inaccuracies in the knowledge of the wavelet fn.

In this approach to deconvolution we are not attempting to determine the best least-
squares estimate of the desired signal xn, but rather the best least-squares inverse to
the blurring function fn. If the second order statistics of xn were known, we could, of
course, determine the optimal (Wiener) estimate x̂n of xn. This is also done in many
applications.

The performance of the spiking filters and their usage in deconvolution are illus-
trated by the following example: The blurring function fn to be spiked was chosen as

fn =
⎧⎨⎩g(n− 25), n = 0,1, . . . ,65

0, for other n

where g(k) was the “gaussian hat” function:

g(k)= cos(0.15k)exp(−0.004k2)

The signal xn to be recovered was taken to be the series of delayed spikes:

xn =
9∑
i=0

aiδ(n− ni)

where the amplitudes ai and delays ni were chosen as

ai = 1, 0.8, 0.5, 0.95, 0.7, 0.5, 0.3, 0.9, 0.5, 0.85

ni = 25, 50, 60, 70, 80, 90, 100, 120, 140, 160

for i = 0,1,2,3,4,5,6,7,8,9.
Figure 5.27 shows the signal fn to be spiked. Since the gaussian hat is symmetric

about the origin, we chose the spiking delay to be at i = 25. The order of the spiking
filter hn wasM = 50. Figure 5.28 shows the impulse response hn versus time. Note the
spiky nature of hn which is required here because fn has a fairly low frequency content.
Figure 5.29 shows the results of the convolution hn∗ fn, which is the best least-squares
approximation to the impulse δ(n− 25).

The “goodness” of the spiking filter is judged by the diagonal entries of the per-
formance matrix P, according to Eq. (5.14.16). For the chosen delay k = 25, we find
P(25,25)= 0.97. To obtain a better picture of the overall performance of the spiking
filters, in Fig. 5.30 we have plotted the diagonal elements P(k, k) versus k. It is seen
that the chosen delay k = 25 is nearly optimal. Figure 5.31 shows the composite signal
yn obtained by convolving fn and xn, according to Eq. (5.4.20).

Figure 5.32 shows the deconvolved signal xn according to Eq. (5.14.21). The recovery
of the amplitudes ai and delays ni of xn is very accurate. These results represent the
idealistic case of noise-free data yn and perfect knowledge of the blurring function fn.
To study the sensitivity of the deconvolution technique to inaccuracies in the knowledge
of the signal fn we have added a small high frequency perturbation on fn as follows:

f ′n = fn + 0.05 sin
(
1.5(n− 25)

)
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Fig. 5.27 and Fig. 5.28 Reflection responses in the time and frequency domains.
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Fig. 5.29 and Fig. 5.30 Reflection responses in the time and frequency domains.
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Fig. 5.31 and Fig. 5.32 Reflection responses in the time and frequency domains.

The approximate signal f ′n is shown in Fig. 5.33. The spiking filter was designed
on the basis of f ′n rather than fn. The result of filtering the same composite signal yn
through the corresponding inverse filter is shown in Fig. 5.34. The delays and am-
plitudes ai and ni are not well resolved, but the basic nature of xn can still be seen.
Inspecting Fig. 5.28 we note the large spikes that are present in the impulse response
hn; these can cause the amplification of any additive noise component. Indeed, the
noise reduction ratio of the filter hn is hTh = 612, thus it will tend to amplify even
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Fig. 5.33 and Fig. 5.34 Reflection responses in the time and frequency domains.

small amounts of noise.
To study the effect of noise, we have added a noise term vn, as in Eq. (5.14.22), with

variance equal to 10−4 (this corresponds to just 1% of the amplitude a0); the composite
signal yn is shown in Fig. 5.35. One can barely see the noise. Yet, after filtering with
the inverse filter hn of Fig. 5.28, the noise component is amplified to a great extent.
The result of deconvolving the noisy yn with hn is shown in Fig. 5.36. To reduce the
effects of noise, the prewhitening parameter ε must be chosen to be nonzero. Even a
small nonzero value of ε can have a beneficial effect. Figures 5.37 and 5.38 show the
deconvolved signal xn when the filter hn was designed with the choices ε = 0.0001 and
ε = 0.001, respectively. Note the trade-off between the noise reduction and the loss of
resolution in the recovered spikes of xn.
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Fig. 5.35 and Fig. 5.36 Reflection responses in the time and frequency domains.

Based on the studies of Robinson and Treitel [59], Oldenburg [145], and others, the
following summary of the use of the above deconvolution method may be made:

1. If the signal fn to be spiked is a minimum-phase signal, the optimal spiking delay
must be chosen at the origin i = 0. The optimality of this choice is not actually
seen until the filter orderM is sufficiently high. The reason for this choice has to
do with the minimum-delay property of such signals which implies that most of
their energy is concentrated at the beginning, therefore, they may be more easily
compressed to spikes with zero delay.

2. If fn is a mixed-delay signal, as in the above example, then the optimal spiking
delay will have some intermediate value.
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Fig. 5.37 and Fig. 5.38 Reflection responses in the time and frequency domains.

3. Even if the shape of fn is not accurately known, the deconvolution procedure
based on the approximate fn might have some partial success in deconvolving the
replicas of fn.

4. In the presence of noise in the data yn to deconvolved, some improvement may
result by introducing a nonzero value for the prewhitening parameter ε, where
effectively the sample autocorrelation Rff(0) is replaced by (1 + ε)R̂ff (0). The
trade-off is a resulting loss of resolution.

The deconvolution problem of Eqs. (5.14.20) and (5.14.22) has been approached by a
wide variety of other methods. Typically, a finite number of samples yn, n = 0,1, . . . ,N
is available. Collecting these into a vector y = [y0, y1, . . . , yN]T, we write Eq. (5.14.22)
in an obvious vectorial form

y = Fx+ v (5.14.23)

Instead of determining an approximate inverse filter for the blurring function F, an
alternative method is to attempt to determine the best—in some sense—vector x which
is compatible with these equations. A popular method is based on the least-squares
criterion [147,148]

E =
N∑
n=0

v2
n = vTv = (y− Fx)T(y− Fx)= min (5.14.24)

That is, x is chosen so as to minimize E. Setting the derivative with respect to x to
zero gives the standard least-squares solution

x̂ = (FTF)−1FTy

A prewhitening term can be added to the right of the performance index to stabilize
the indicated inverse

E = vTv+ λxTx

with solution x̂ = (FTF+λI)−1FTy. Another approach that has been used with success
is based on the L1-norm criterion

E =
N∑
n=0

|vn| = min (5.14.25)

This quantity is referred to as the L1 norm of the vector v. The minimization of
this norm with respect to x may be formulated as a linear programming problem [149-
155]. It has been observed that this method performs very well in the presence of
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noise, and it tends to ignore a few “bad” data points—that is, those for which the noise
value vn might be abnormally high—in favor of the good points, whereas the standard
least-squares method based on the L2-norm (5.14.24) will spend all its efforts trying to
minimize the few large terms in the sum (5.14.24), and might not result in as good an
estimate of x as it would if the few bad data points were to be ignored.

Another class of deconvolution methods are iterative methods. Such methods, like
the linear programming method mentioned above, offer the additional option of enforc-
ing priori constraints that may be known to be satisfied by x, for example, positivity,
band-limiting, or time-limiting constraints. The imposition of such constraints can im-
prove the restoration process dramatically. The interested reader is referred to the
review article [156].

5.15 Problems

5.1 (a) Following the methods of Section 5.1, show that the optimal filter for predicting D
steps into the future—i.e., estimating y(n + D) on the basis of {y(m); m ≤ n}—is
given by

H(z)= 1

B(z)
[
zDB(z)

]
+

(b) Express
[
zDB(z)

]
+ in terms of B(z) itself and the first D− 1 impulse response coef-

ficients bm,m = 1,2, . . . ,D− 1 of B(z).

(c) For the two random signals yn defined in Examples 5.1.1 and 5.1.2, find the optimal
prediction filters for D = 2 and D = 3, and write the corresponding I/O equations.

5.2 Consider the order-p autoregressive sequence yn defined by the difference equation (5.2.3).
Show that a direct consequence of this difference equation is that the projection of yn onto
the subspace spanned by the entire past {yn−i; 1 ≤ i < ∞} is the same as the projection of
yn onto the subspace spanned only by the past p samples {yn−i; 1 ≤ i ≤ p}.

5.3 (a) Show that the performance index (5.3.2) may be written as

E = E[e2
n]= aTRa

where a = [1, a1, . . . , ap]T is the order-p prediction-error filter, and R the autocorre-
lation matrix of yn; that is, Rij = E[yn−iyn−j].

(b) Derive Eq. (5.3.7) by minimizing the index E with respect to the weights a, subject
to the linear constraint that a0 = 1, and incorporating this constraint by means of a
Lagrange multiplier.

5.4 Take the inverse z-transform of Eq. (5.3.17) and compare the resulting equation with Eq. (5.3.15).

5.5 Verify that Eqs. (5.3.22) and (5.3.23) are inverses of each other.

5.6 A fourth order all-pole random signal process y(n) is represented by the following set of
signal model parameters (reflection coefficients and input variance):

{γ1, γ2, γ3, γ4, σ2
ε} = {0.5, −0.5, 0.5, −0.5, 40.5}

(a) Using the Levinson recursion, find the prediction error filter A4(z).

(b) Determine σ2
y = Ryy(0). Using intermediate results from part (a), determine the au-

tocorrelation lags Ryy(k), k = 1,2,3,4.

5.7 The first five lags of the autocorrelation function of a fourth-order autoregressive random
sequence y(n) are

{R(0), R(1), R(2), R(3), R(4)} = {256, 128, −32, −16, 22}

Determine the best prediction-error filters and the corresponding mean-square errors of
orders p = 1,2,3,4 by using Levinson’s algorithm in matrix form.
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5.8 The fourth-order prediction-error filter and mean-square prediction error of a random signal
have been determined to be

A4(z)= 1− 1.25z−1 + 1.3125z−2 − z−3 + 0.5z−4 , E4 = 0.81

Using the subroutine rlev, determine the autocorrelation lags R(k), 0 ≤ k ≤ 4, the four
reflection coefficients, and all the lower order prediction-error filters.

5.9 Verify the results of Example (5.3.1) using the subroutines lev, frwlev, bkwlev, and rlev, as
required.

5.10 (a) Given the five signal samples

{y0, y1, y2, y3, y4} = {1, −1, 1, −1, 1}

compute the corresponding sample autocorrelation lags R̂(k), k = 0,1,2,3,4, and
send them through the routine lev to determine the fourth-order prediction error filter
A4(z).

(b) Predict the sixth sample in this sequence.

(c) Repeat (a) and (b) for the sequence of samples {1,2,3,4,5}.
5.11 Find the infinite autoregressive or maximum-entropy extension of the two autocorrelation

sequences

(a) {R(0), R(1)} = {1, 0.5}
(b) {R(0), R(1), R(2)} = {4, 0, 1}

In both cases, determine the corresponding power spectrum density Syy(z) and from it
calculate the R(k) for all lags k.

5.12 Write Eq. (5.3.24) for order p + 1. Derive Eq. (5.5.1) from Eq. (5.3.24) by replacing the filter
ap+1 in terms of the filter ap via the Levinson recursion.

5.13 Do Problem 5.7 using the split Levinson algorithm.

5.14 Draw the lattice realization of the analysis and synthesis filtersA4(a) and 1/A4(z) obtained
in Problems 5.6, 5.7, and 5.8.

5.15 Test the minimum-phase property of the two polynomials

A(z) = 1− 1.08z−1 + 0.13z−2 + 0.24z−3 − 0.5z−4

A(z) = 1+ 0.18z−1 − 0.122z−2 − 0.39z−3 − 0.5z−4

5.16 (a) The entropy of anM-dimensional random vector is defined byS = − ∫
p(y)lnp(y)dMy.

Show that the entropy of a zero-mean gaussian y with covariance matrix R is given,
up to an additive constant, by S = 1

2 ln(detR).

(b) With the help of the LU factorization (5.9.l), show that ratio of the determinants of an
orderM autocorrelation matrix and its order p (p < M) submatrix is

detRM
detRp

=
M∏

i=p+1

Ei

(c) Consider all possible autocorrelation extensions of the set {R(0), R(1), . . . , R(p)}
up to orderM. For gaussian processes, use the results in parts (a) and (b) to show that
the particular extension defined by the choice γi = 0, i = p+ 1, . . . ,M maximizes the
entropy of the order-M process; hence, the name maximum entropy extension.

5.17 Consider the LU factorization LRLT = D of an order-M autocorrelation matrix R. Denote
by bTp , p = 0,1, . . . ,M the rows of L. They are the backward prediction filters with zeros
padded to their ends to make them (M + 1)-dimensional vectors.

(a) Show that the inverse factorization R−1 = LTD−1L can be written as

R−1 =
M∑
p=0

1

Ep
bpb

T
p



5.15. Problems 223

(b) Define the “phasing” vectors s(z)= [1, z−1, z−2, . . . , z−M]T . Show that the z-transform
of an order-M filter and its inverse can be expressed compactly as

A(z)= s(z)Ta , a =
∮

u.c
A(z)s(z−1)

dz
2πjz

(c) Define the “kernel” vector k(w)= R−1s(w). The z-transform of this vector is called a
reproducing kernel [57,58,66]. Show that it can be written in the alternative forms

K(z,w)= s(z)Tk(w)= k(z)Ts(w)= k(z)TRk(w)= s(z)TR−1s(w)

(d) Let J denote the (M + 1)×(M + 1) reversing matrix. Show that Js(z)= z−Ms(z−1).
And that K(z,w)= z−Mw−MK(z−1,w−1).

(e) Show that K(z,w) admits the following representations in terms of the backward and
forward prediction polynomials

K(z,w)=
M∑
p=0

1

Ep
Bp(z)Bp(w)=

M∑
p=0

1

Ep
Ap(z)Ap(w)z−(M−p)w−(M−p)

5.18 Let Syy(z) be the power spectral density of the autocorrelation function R(k) from which
we build the matrix R of the previous problem. Show that R and R−1 admit the following
representations in terms of the phasing and kernel vectors:

R =
∮

u.c.
Syy(z)s(z−1)s(z)T

dz
2πjz

, R−1 =
∮

u.c.
Syy(z)k(z−1)k(z)T

dz
2πjz

Then, show the reproducing kernel property

K(z,w)=
∮

u.c.
K(z,u−1)K(w,u)Syy(u)

du
2πju

5.19 (a) Let sp(z)= [1, z−1, z−2, . . . , z−p]T . Using the order-updating formulas for R−1
p show

that the kernel vector kp(w)= R−1
p sp(w) satisfies the following order-recursive equa-

tions

kp(w)=
[

kp−1(w)
0

]
+ 1

Ep
bpBp(w) , kp(w)=

[
0

w−1kp−1(w)

]
+ 1

Ep
apAp(w)

(b) Show that the corresponding reproducing kernels satisfy

Kp(z,w) = Kp−1(z,w)+ 1

Ep
Bp(z)Bp(w)

Kp(z,w) = z−1w−1Kp−1(z,w)+ 1

Ep
Ap(z)Ap(w)

(c) Using part (b), show the Christoffel-Darboux formula [57,58,66]

Kp(z,w)= 1

Ep
Ap(z)Ap(w)−z−1w−1Bp(z)Bp(w)

1− z−1w−1

(d) Let zi be the ith zero of the prediction polynomial Ap(z). Using part (c), evaluate
Kp(zi, z∗i ) and thereby show that necessarily |zi| ≤ 1. This is yet another proof of
the minimum-phase property of the prediction-error filters. Show further that if the
prediction filter ap is symmetric; i.e., ap = aRp , then its zeros lie on the unit circle.

(e) Show the Christoffel-Darboux formula [57,58,66]

Kp−1(z,w)= 1

Ep
Ap(z)Ap(w)−Bp(z)Bp(w)

1− z−1w−1

and use this expression to prove the result in (d) that |zi| ≤ 1.
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5.20 Do Problem 5.7 using the Schur algorithm, determine the Cholesky factor G, and verify
R = GD−1GT by explicit matrix multiplication.

5.21 For the Example 5.10.2, compute the entries of the output matricesY± by directly convolving
the forward/backward prediction filters with the input autocorrelation lags.

5.22 Do Problem 5.7 using the split Schur algorithm, and determine the Cholesky factor G by the
recursion (5.10.21).

5.23 (a) Show the identity ∣∣∣∣∣−a∗ + z−1

1− az−1

∣∣∣∣∣
2

= 1−
(
1− |z−1|2)(1− |a|2)

|1− az−1|2
(b) Using part (a), show that the all-pass Schur function Sp(z) defined by Eq. (5.10.22)

satisfies the boundedness inequality (5.10.23), with equality attained on the unit circle.
Show that it also satisfies |Sp(z)| > 1 for |z| < 1.

5.24 Define the Schur function

S3(z)= 0.125− 0.875z−2 + z−3

1− 0.875z−1 + 0.125z−3

Carry out the recursions (5.10.24) and (5.10.25) to construct the lower order Schur functions
Sp(z), p = 2,1,0, and, in the process, extract the corresponding reflection coefficients.

5.25 Consider a generalized version of the simulation example discussed in Section 5.11, defined
by

x(n)= s(n)+v1(n) , y(n)= v2(n)
where

s(n) = sin(ω0n+φ)
v1(n) = a1v1(n− 1)+v(n)
v2(n) = a2v2(n− 1)+v(n)

where v(n) is zero-mean, unit-variance, white noise, and φ is a random phase independent
of v(n). This ensures that the s(n) component is uncorrelated with v1(n) and v2(n).

(a) Show that

Rxy(k)= ak1
1− a1a2

, Ryy(k)= ak2
1− a2

2
, k ≥ 0

(b) Show that the infinite-order Wiener filter for estimating x(n) on the basis of y(n) has
a (causal) impulse response

h0 = 1 , hk = (a1 − a2)ak−1
1 , k ≥ 1

(c) Next, consider the order-M FIR Wiener filter. Send the theoretical correlations of part
(a) for k = 0,1, . . . ,M through the subroutine firw to obtain the theoreticalMth order
Wiener filter realized both in the direct and the lattice forms. Draw these realizations.
Compare the theoretical values of the weights h, g, and γγγ with the simulated values
presented in Section 5.11 that correspond to the choice of parameters M = 4, a1 =
−0.5, and a2 = 0.8. Also compare the answer for h with the first (M + 1) samples of
the infinite-order Wiener filter impulse response of part (b).

(d) Repeat (c) withM = 6.

5.26 A closed form solution of Problem 5.25 can be obtained as follows.

(a) Show that the inverse of the (M + 1)×(M + 1) autocorrelation matrix defined by
the autocorrelation lags Ryy(k), k = 0,1, . . . ,M of Problem 5.25(a) is given by the
tridiagonal matrix:

R−1
yy =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −a2 0 · · · 0 0
−a2 b −a2 · · · 0 0

0 −a2 b · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · b −a2

0 0 0 · · · −a2 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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where b = 1+ a2
2.

(b) Using this inverse, show that the optimalMth order Wiener filter has impulse response

h0 = 1 , hk = (a1 − a2)ak−1
1 , for 1 ≤ k ≤M − 1 , and hM = a1 − a2

1− a1a2
aM−1

1

(c) Show that the lattice weights g can be obtained from h by the backward substitution

gM = hM , and gm = a2gm+1 + hm , m =M − 1,M − 2, . . . ,1,0

(d) For M = 4, a1 = −0.5, a2 = 0.8, compute the numerical values of h and g using the
above expressions and compare them with those of Problem 5.25(c).

5.27 Computer Experiment. Consider the noise canceling example of Section 5.11 and Problem
5.25, defined by the choice of parameters

ω0 = 0.075π [radians/sample] , φ = 0 , a1 = −0.5 , a2 = 0.8 , M = 4

(a) Generate 100 samples of the signals x(n), s(n), and y(n). On the same graph, plot
x(n) and s(n) versus n. Plot y(n) versus n.

(b) Using these samples, compute the sample correlations R̂yy(k), R̂xy(k), for k = 0,1,
. . . ,M, and compare them with the theoretical values obtained in Problem 5.25(a).

(c) Send these lags through the routine firw to get the optimal Wiener filter weights h and
g, and the reflection coefficientsγγγ. Draw the lattice and direct-form realizations of the
Wiener filter.

(d) Filter y(n) through the Wiener filter realized in the lattice form, and plot the output
e(n)= x(n)−x̂(n) versus n.

(e) Repeat (d) using the direct-form realization of the Wiener filter.

(f) Repeat (d) whenM = 6.

5.28 The following six samples

{y0, y1, y2, y3, y4, y5} = {4.684, 7.247, 8.423, 8.650, 8.640, 8.392}

have been generated by sending zero-mean unit-variance white noise through the difference
equation

yn = a1yn−1 + a2yn−2 + εn
where a1 = 1.70 and a2 = −0.72. Iterating Burg’s method by hand, obtain estimates of the
model parameters a1, a2, and σ2

ε .

5.29 Derive Eq. (5.12.11).

5.30 Computer Experiment. Ten samples from a fourth-order autoregres-
sive process y(n) are given. It is desired to extract the model pa-
rameters {a1, a2, a3, a4, σ2

ε} as well as the equivalent parameter set
{γ1, γ2, γ3, γ4, σ2

ε}.
(a) Determine these parameters using Burg’s method.
(b) Repeat using the Yule-Walker method.

Note: The exact parameter values by which the above simulated sam-
ples were generated are

{a1, a2, a3, a4, σ2
ε} = {−2.2137, 2.9403, −2.2697, 0.9606, 1}

n y(n)
0 4.503
1 −10.841
2 −24.183
3 −25.662
4 −14.390
5 1.453
6 10.980
7 13.679
8 15.517
9 15.037

5.31 Using the continuity equations at an interface, derive the transmission matrix equation
(5.13.2) and the energy conservation equation (5.13.4).

5.32 Show Eq. (5.13.6).
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5.33 Figure 5.14 defines the scattering matrix S. Explain how the principle of linear superposition
may be used to show the general relationship[

E′+
E−

]
= S

[
E+
E′−

]

between incoming and outgoing fields.

5.34 Show the two properties of the matrix ψm(z) stated in Eqs. (5.13.13) and (5.13.14).

5.35 Show Eqs. (5.13.25).

5.36 The reflection response of a stack of four dielectrics has been found to be

R(z)= −0.25+ 0.0313z−1 + 0.2344z−2 − 0.2656z−3 + 0.25z−4

1− 0.125z−1 + 0.0664z−3 − 0.0625z−4

Determine the reflection coefficients {ρ0, ρ1, ρ2, ρ3, ρ4}.

5.37 Computer Experiment. It is desired to probe
the structure of a stack of dielectrics from
its reflection response. To this end, a unit
impulse is sent incident on the stack and the
reflection response is measured as a func-
tion of time.
It is known in advance (although this is not
necessary) that the stack consists of four
equal travel-time slabs stacked in front of
a semi-infinite medium.
Thirteen samples of the reflection response
are collected as shown here. Determine the
reflection coefficients {ρ0, ρ1, ρ2, ρ3, ρ4} by
means of the dynamic predictive deconvolu-
tion procedure.

k R(k)
0 −0.2500
1 0.0000
2 0.2344
3 −0.2197
4 0.2069
5 0.0103
6 0.0305
7 −0.0237
8 0.0093
9 −0.0002

10 0.0035
11 −0.0017
12 0.0004

5.38 Computer Experiment. Generate the results of Figures 5.16–5.17 and 5.25–5.26.

5.39 Computer Experiment. This problem illustrates the use of the dynamic predictive deconvolu-
tion method in the design of broadband terminations of transmission lines. The termination
is constructed by the cascade of M equal travel-time segments of transmission lines such
that the overall reflection response of the structure approximates the desired reflection re-
sponse. The characteristic impedances of the various segments are obtainable from the
reflection coefficients {ρ0, ρ1, . . . , ρM}. The reflection response R(ω) of the structure is a
periodic function ofω with periodωs = 2π/T2, where T2 is the two-way travel time delay
of each segment. The design procedure is illustrated by the following example: The desired
frequency response R(ω) is defined over one Nyquist period, as shown in Fig. 5.39:

R(ω)=
⎧⎨⎩0, for 0.25ω2 ≤ω ≤ 0.75ωs

0.9, for 0 ≤ω < 0.25ωs and 0.75ωs < ω ≤ωs

Fig. 5.39 Desired reflection frequency response.
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(a) Using the Fourier series method of designing digital filters, design an N = 21-tap
filter with impulse response R(k), k = 0,1, . . . ,N − 1, whose frequency response
approximates the desired response defined above. Window the designed reflection
impulse responseR(k) by a length-NHamming window. Plot the magnitude frequency
response of the windowed reflection series over one Nyquist interval 0 ≤ω ≤ωs.

(b) ForM = 6, send theN samples of the windowed reflection series through the dynamic
predictive deconvolution routine dpd to obtain the polynomials AM(z) and BM(z)
and the reflection coefficients {ρ0, ρ1, . . . , ρM}. Plot the magnitude response of the
structure; that is, plot

|R(ω)| =
∣∣∣∣ BM(z)AM(z)

∣∣∣∣ , z = exp(jωT2)= exp
(

2πj
ω
ωs

)
and compare it with the windowed response of part (a). To facilitate the comparison,
plot both responses of parts (a) and (b) on the same graph.

(c) Repeat part (b) forM = 2,M = 3, andM = 10.

(d) Repeat parts (a) through (c) for N = 31 reflection series samples.

(e) Repeat parts (a) through (c) for N = 51.

5.40 Show that the performance matrix P defined by Eq. (5.14.11) has trace equal toM + 1.

5.41 Computer Experiment. Reproduce the results of Figs. 5.27 through 5.34.
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6
Spectrum Estimation

6.1 Spectrum Estimation by Autoregressive Modeling

When a block of signal samples is available, it may be too short to provide enough
frequency resolution in the periodogram spectrum. Often, it may not even be correct
to extend the length by collecting more samples, since this might come into conflict
with the stationarity of the segment. In cases such as these, parametric representation
of the spectra by means of autoregressive models can provide much better frequency
resolution than the classical periodogram method [1–15]. This approach was discussed
briefly in Section 1.11.

The spectrum estimation procedure is as follows: First, the given data segment
{y0, y1, . . . , yN−1} is subjected to one of the analysis methods discussed in Section 5.12
to extract estimates of the LPC model parameters {a1, a2, . . . , aM;EM}. The choice of the
order M is an important consideration. There are a number of criteria for model order
selection [1], but there is no single one that works well under all circumstances. In fact,
selecting the right order M is more often an art than science. As an example, we men-
tion Akaike’s final prediction error (FPE) criterion which selects the M that minimizes
the quantity

EM · N +M + 1

N −M − 1
= min

where EM is the estimate of the mean-square prediction error for theMth order predic-
tor, and N is the length of the sequence yn. As M increases, the factor EM decreases
and the second factor increases, thus, there is a minimum value. Then, the spectrum
estimate is given by

SAR(ω)= EM∣∣AM(ω)∣∣2 =
EM∣∣1+ a1e−jω + a2e−2jω + · · · + aMe−Mjω

∣∣2 (6.1.1)

Note that this would be the exact spectrum if yn were autoregressive with the above
set of model parameters. Generally, spectra that have a few dominant spectral peaks
can be modeled quite successfully by such all-pole autoregressive models. One can also
fit the given block of data to more general ARMA models. The decision to model a spec-
trum by ARMA, AR, or MA models should ultimately depend on some prior information
regarding the physics of the process yn. The reader is referred to the exhaustive review
article of Kay and Marple [1], to the special issue [10], and to [2,4,11,13–15], for the
discussion of essentially all currently available spectrum estimation techniques, and to
Robinson’s interesting historical account [12].

Next, we compare by means of a simulation example the classical periodogram
method, the Yule-Walker method, and Burg’s method of computing spectrum estimates.
Generally, the rule of thumb to follow is that Burg’s method should work better than the
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other methods on short records of data, and that all three methods tend to improve as
the data record becomes longer. For our simulation example, we chose a fourth order
autoregressive model characterized by two very sharp peaks in its spectrum. The signal
generator for the sequence yn was

yn + a1yn−1 + a2yn−2 + a3yn−3 + a4yn−4 = εn
where εn was zero-mean, unit-variance, white noise. The prediction-error filter A(z)
was defined in terms of its four zeros:

A(z) = 1+ a1z−1 + a2z−2 + a3z−3 + a4z−4

= (1− z1z−1)(1− z∗1 z−1)(1− z2z−1)(1− z∗2 z−1)

where the zeros were chosen as

z1 = 0.99 exp(0.2πj) , z2 = 0.99 exp(0.4πj)

This gives for the filter coefficients

a1 = −2.2137 , a2 = 2.9403 , a3 = −2.1697 , a4 = 0.9606

The exact spectrum is given by Eq. (6.1.1) with E4 = σ2
ε = 1. Since the two zeros

z1 and z2, are near the unit circle, the spectrum will have two very sharp peaks at the
normalized frequencies

ω1 = 0.2π, ω2 = 0.4π [radians/sample]

Using the above difference equation and a realization of εn, a sequence of length 20
of yn samples was generated (the filter was run for a while until its transients died out
and stationarity of yn was reached). The same set of 20 samples was used to compute the
ordinary periodogram spectrum and the autoregressive spectra using the Yule-Walker
and Burg methods of extracting the model parameters. Then, the length of the data
sequence yn was increased to 100 and the periodogram, Yule-Walker, and Burg spectra
were computed again.

Figures 6.1 and 6.2 show the periodogram spectra for the two signal lengths of 20
and 100 samples. Figs. 6.3 and 6.4 show the Yule-Walker spectra, and Figs. 6.5 and 6.6,
the Burg spectra.
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Fig. 6.1 and Fig. 6.2 Periodogram spectra based on 20 and 100 samples.

The lack of sufficient resolution of both the periodogram and the Yule-Walker spec-
trum estimates for the shorter data record can be attributed to the windowing of the
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Fig. 6.3 and Fig. 6.4 Yule-Walker spectra based on 20 and 100 samples.
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Fig. 6.5 and Fig. 6.6 Burg spectra based on 20 and 100 samples.

signal yn. But as the length increases the effects of windowing become less pronounced
and both methods improve. Burg’s method is remarkable in that it works very well
even on the basis of very short data records. The Burg spectral estimate is sometimes
called the “maximum entropy” spectral estimate. The connection to entropy concepts
is discussed in the above references.

6.2 Spectral Analysis of Sinusoids in Noise

One of the most important signal processing problems is the estimation of the frequen-
cies and amplitudes of sinusoidal signals buried in additive noise [1,2,4,5,8,10–24]. In
addition to its practical importance, this problem has served as the testing ground for all
spectrum estimation techniques, new or old. In this section we discuss four approaches
to this problem: (1) the classical method, based on the Fourier transform of the win-
dowed autocorrelation; (2) the maximum entropy method, based on the autoregressive
modeling of the spectrum; (3) the maximum likelihood, or minimum energy, method;
and (4) Pisarenko’s method of harmonic retrieval which offers the highest resolution.

Consider a signal consisting of L complex sinusoids with random phases in additive
noise:

yn = vn +
L∑
i=1

Aiejωin+jφi (6.2.1)
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where the phases φi are uniformly distributed and independent of each other, and vn
is zero-mean white noise of variance σ2

v , assumed to be independent of the phases φi:

E[v∗nvm]= σ2
vδnm , E[φivn]= 0 (6.2.2)

Under these assumptions, the autocorrelation of yn is easily found to be

R(k)= E[yn+ky∗n ]= σ2
vδ(k)+

L∑
i=1

Piejωik (6.2.3)

where Pi denotes the power of the ith sinusoid; that is, Pi = |Ai|2. The basic problem
is to extract the set of frequencies {ω1,ω2, . . . ,ωL} and powers {P1, P2, . . . , PL} by
appropriate processing a segment of signal samples yn. The theoretical power spectrum
is a line spectrum superimposed on a flat white-noise background:

S(ω)= σ2
v +

L∑
i=1

Pi 2πδ(ω−ωi) (6.2.4)

which is obtained by Fourier transforming Eq. (6.2.3):

S(ω)=
∞∑

k=−∞
R(k)e−jωk (6.2.5)

Given a finite set of autocorrelation lags {R(0), R(1), . . . , R(M)}, the classical spec-
trum analysis method consists of windowing these lags by an appropriate window and
then computing the sum (6.2.5), truncated to −M ≤ k ≤ M. We will use the triangular
or Bartlett window which corresponds to the mean value of the ordinary periodogram
spectrum [25]. This window is defined by

wB(k)=

⎧⎪⎪⎨⎪⎪⎩
M + 1− |k|
M + 1

, if −M ≤ k ≤M

0 , otherwise

ReplacingR(k) bywB(k)R(k) in Eq. (6.2.5), we obtain the classical Bartlett spectrum
estimate:

ŜB(ω)=
M∑

k=−M
wB(k)R(k)e−jωk (6.2.6)

We chose the Bartlett window because this expression can be written in a compact
matrix form by introducing the (M + 1)-dimensional phase vector

sω =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
ejω

e2jω

...
eMjω

⎤⎥⎥⎥⎥⎥⎥⎥⎦
and the (M + 1)×(M + 1) autocorrelation matrix R, defined as

Rkm = R(k−m)= σ2
vδ(k−m)+

L∑
i=1

Piejωi(k−m) , 0 ≤ k,m ≤M

Ignoring the 1/(M+1) scale factor arising from the definition of the Bartlett window,
we may write Eq. (6.2.6) as

ŜB(ω)= s†ωRsω (classical Bartlett spectrum) (6.2.7)
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The autocorrelation matrix R of the sinusoids can also be written in terms of the
phasing vectors as

R = σ2
vI +

L∑
i=1

Pi sωis
†
ωi (6.2.8)

where I is the (M+1)×(M+1) identity matrix. It can be written even more compactly
by introducing the L×L diagonal power matrix, and the (M + 1)×L sinusoid matrix

P = diag{P1, P2, . . . , PL} , S = [sω1 , sω2 , . . . , sωL]

Then, Eq. (6.2.8) becomes
R = σ2

vI + SPS† (6.2.9)

Inserting Eq. (6.2.8) into Eq. (6.2.7) we find

ŜB(ω)= σ2
v s†ωsω +

L∑
i=1

Pi s†ωsωis
†
ωisω

Defining the function

W(ω)=
M∑
m=0

e−jωm = 1− e−jω(M+1)

1− e−jω =
sin

(
ω(M + 1)

2

)
sin

(
ω
2

) e−jωM/2 (6.2.10)

we note that
s†ωsωi =W(ω−ωi) and s†ωsω =W(0)=M + 1

Then, in this notation, the Bartlett spectrum (6.2.7) becomes

ŜB(ω)= σ2
v(M + 1)+

L∑
i=1

Pi
∣∣W(ω−ωi)∣∣2

(6.2.11)

The effect of W(ω − ωi) is to smear each spectral line δ(ω − ωi) of the true
spectrum. If the frequencies ωi are too close to each other the smeared peaks will
tend to overlap with a resulting loss of resolution. The function W(ω) is the Fourier
transform of the rectangular window and is depicted below:

It has an effective resolution width of Δω = 2π/(M + 1). For fairly large Ms,
the first side lobe is about 13 dB down from the main lobe. As M increases, the main
lobe becomes higher and thinner, resembling more and more a delta function, which
improves the frequency resolution capability of this estimate.

Next, we derive a closed form expression [20,24] for the AR, or maximum entropy,
spectral estimate. It is given by Eq. (6.1.1) and is obtained by fitting an order-M autore-
gressive model to the autocorrelation lags {R(0), R(1), . . . , R(M)}. This can be done
for any desired value of M. Autoregressive spectrum estimates generally work well in
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modeling “peaked” or resonant spectra; therefore, it is expected that they will work in
this case, too. However, it should be kept in mind that AR models are not really appro-
priate for such sinusoidal signals. Indeed, AR models are characterized by all-pole stable
filters that always result in autocorrelation functions R(k) which decay exponentially
with the lag k; whereas Eq. (6.2.3) is persistent in k and never decays.

As a rule, AR modeling of sinusoidal spectra works very well as long as the signal to
noise ratios (SNRs) are fairly high. Pisarenko’s method, to be discussed later, provides
unbiased frequency estimates regardless of the SNRs. The LPC model parameters for the
AR spectrum estimate (6.1.1) are obtained by minimizing the mean-square prediction
error:

E = E[e∗nen]= a†Ra = min , en =
M∑
m=0

amyn−m (6.2.12)

where a = [1, a1, a2, . . . , aM]T is the prediction-error filter and R, the autocorrelation
matrix (6.2.9). The minimization of E must be subject to the linear constraint that the
first entry of a be unity. This constraint can be expressed in vector form

a0 = u†0a = 1 (6.2.13)

where u0 = [1,0,0, . . . ,0]T is the unit vector consisting of 1 followed byM zeros. Incor-
porating this constraint with a Lagrange multiplier, we solve the minimization problem:

E = a†Ra+ μ(1− u†0a)= min

Differentiating with respect to a we obtain the normal equations:

Ra = μu0

To fix the Lagrange multiplier, multiply from the left by a† and use Eq. (6.2.13) to
get a†Ra = μa†u0, or, E = μ. Thus, μ is the minimized value of E, which we denote by
E. In summary, we have

Ra = Eu0 ⇒ a = ER−1u0 (6.2.14)

Multiplying from the left by u†0, we also find 1 = E(u†0R−1u0), or

E−1 = u†0R−1u0 = (R−1)00 (6.2.15)

which is, of course, the same as Eq. (5.9.18). The special structure of R allows the
computation of a and the AR spectrum in closed form. Applying the matrix inversion
lemma to Eq. (6.2.9), we find the inverse of R:

R−1 = 1

σ2
v
(I + SDS†) (6.2.16)

where D is an L×L matrix given by

D = −[
σ2
vP−1 + S†S]−1

(6.2.17)

Equation (6.2.16) can also be derived directly by assuming such an expression for
R−1 and then fixing D. The quantity σ2

vP−1 in D is a matrix of noise to signal ratios.
Inserting Eq. (6.2.16) into (6.2.14), we find for a :

a = ER−1u0 = E
σ2
v
[u0 + SDS†u0]= E

σ2
v
[u0 + Sd]

where we used the fact that s†ωiu0 = 1, which implies that

S†u0 =

⎡⎢⎢⎢⎢⎢⎣
s†ω1

s†ω2

...

s†ωL

⎤⎥⎥⎥⎥⎥⎦ u0 =

⎡⎢⎢⎢⎢⎢⎣
1
1
...
1

⎤⎥⎥⎥⎥⎥⎦ ≡ v (i.e., a column of L ones)
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and defined

d =

⎡⎢⎢⎢⎢⎢⎣
d1

d2

...
dL

⎤⎥⎥⎥⎥⎥⎦ = Dv , or, di =
L∑
j=1

Dij

Using Eq. (6.2.15), we have also

E−1 = u†0R−1u0 = 1

σ2
v

u†0[I + SDS†]=
1

σ2
v
[1+ vTDv]

= 1

σ2
v
[1+ vTd]= 1

σ2
v

[
1+

L∑
i=1

di
]

and, therefore,

E = σ2
v

[
1+

L∑
i=1

di
]−1

(6.2.18)

We finally find for the prediction-error filter

a = u0 + Sd

1+ vTd
=
u0 +

L∑
i=1

disωi

1+
L∑
i=1

di

(6.2.19)

The frequency response A(ω) of the prediction-error filter is obtained by dotting
the phasing vector sω into a :

A(ω)=
M∑
m=0

ame−jωm = s†ωa =
1+

L∑
i=1

dis†ωsωi

1+
L∑
i=1

di

using the result that s†ωsωi =W(ω−ωi), we finally find:

A(ω)=
1+

L∑
i=1

diW(ω−ωi)

1+
L∑
i=1

di

(6.2.20)

and for the AR, or maximum entropy, spectrum estimate:

ŜAR(ω)= E
|A(ω)|2 = σ

2
v

∣∣∣∣1+
L∑
i=1

di
∣∣∣∣∣∣∣∣∣∣1+

L∑
i=1

diW(ω−ωi)
∣∣∣∣∣∣

2 (6.2.21)

The frequency dependence is shown explicitly. Note, that the matrix S†S appearing
in the definition ofD, can also be expressed in terms ofW(ω). Indeed, the ijth element
of S†S is, for 0 ≤ i, j ≤ L:

(S†S)ij= s†ωisωj =W(ωi −ωj)
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One interesting consequence of Eq. (6.2.21) is that in the limit of very weak noise
σ2
v → 0, it vanishes. In this limit the mean-square prediction error (6.2.18) vanishes.

This is to be expected, since in this case the noise term vn is absent from the sum
(6.2.1), rendering yn a deterministic signal; that is, one that can be predicted from a few
past values with zero prediction error. To avoid such behavior when σ2

v is small, the
factor E is sometimes dropped altogether from the spectral estimate resulting in the
“pseudo-spectrum”

ŜAR(ω)= 1

|A(ω)|2 (6.2.22)

This expression will exhibit fairly sharp peaks at the sinusoid frequencies, but the
magnitude of these peaks will no longer be representative of the power levels Pi. This ex-
pression can only be used to extract the frequenciesωi. Up to a scale factor, Eq. (6.2.22)
can also be written in the form

ŜAR(ω)= 1∣∣s†ωR−1u0
∣∣2

Example 6.2.1: To see the effect of the SNR on the sharpness of the peaks in the AR spectrum,
consider the caseM = L = 1. Then,

S†S = s†ω1
sω1 =

[
1, e−jω1

][
1
ejω1

]
=M + 1 = 2

D = −[σ2
vP−1

1 + 2]−1

a = u0 + d1sω1

1+ d1
=

⎡⎢⎣ 1
d1

1+ d1
ejω1

⎤⎥⎦
Using d1 = D, we find

a =
⎡⎢⎣ 1

− P1

P1 +σ2
v
ejω1

⎤⎥⎦ , A(z)= 1+ a1z−1

The prediction-error filter has a zero at

z1 = −a1 = P1

P1 +σ2
v
ejω1

The zero z1 is inside the unit circle, as it should. The lower the SNR = P1/σ2
v , the more

inside it lies, resulting in a more smeared peak about ω1. As the SNR increases, the zero
moves closer to the unit circle at the right frequencyω1, resulting in a very sharp peak in
the spectrum (6.2.22). ��

Example 6.2.2: For the case of a single sinusoid and arbitrary orderM, compute the 3-dB width
of the spectral peak of AR spectrum and compare it with the width of the Bartlett spectrum.
Using Eq. (6.2.20), we have

A(ω)= 1+ d1W(ω−ω1)
1+ d1

, d1 = −[SNR−1 +M + 1]−1

where we set SNR = P1/σ2
v . The value of A(ω) at the sinusoid frequency is

A(ω1)= 1+ d1W(0)
1+ d1

= 1

1+ SNR ·M

It is small in the limit of high SNR resulting in a high peak in the spectrum. The half-width
at half-maximum of the AR spectrum is defined by the condition

S(ω1 +Δω)
S(ω1)

= 1

2
, or, equivalently,

|A(ω1 +Δω)|2
|A(ω1)|2 = 2
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To first order in Δω, we have

W(Δω)=
M∑
m=0

e−jmΔω =
M∑
m=0

(1− jmΔω)= (M + 1)−1

2
jM(M + 1)Δω

where we used
∑M
m=0m =M(M + 1)/2. Then, we find

A(ω1 +Δω)
A(ω1)

= 1+ d1W(Δω)
1+ d1W(0)

= 1− 1

2
SNR · jM(M + 1)Δω

The condition for half-maximum requires that the above imaginary part be unity, which
gives for the 3-dB width [18]

(Δω)3dB= 2Δω = 4

SNR ·M(M + 1)

Thus, the peak becomes narrower both with increasing SNR and with order M. Note that
it depends onM like O(1/M2), which is a factor ofM smaller than the Bartlett width that
behaves like O(1/M). ��

More generally, in the case of multiple sinusoids, if the SNRs are high the spectrum
(6.2.22) will exhibit sharp peaks at the desired sinusoid frequencies. The mechanism by
which this happens can be seen qualitatively from Eq. (6.2.20) as follows: The matrix
S†S inD introduces cross-coupling among the various frequenciesωi. However, if these
frequencies are well separated from each other (by more than 2π/(M+1),) then the off-
diagonal elements of S†S, namelyW(ωi−ωj) will be small, and for the purpose of this
argument may be taken to be zero. This makes the matrix S†S approximately diagonal.
Since W(0)= M + 1 it follows that S†S = (M + 1)I, and D will become diagonal with
diagonal elements

di = Dii = −[σ2
vP
−1
i +M + 1]−1= − Pi

σ2
v + (M + 1)Pi

Evaluating A(ω) at ωi and keeping only the ith contribution in the sum we find,
approximately,

A(ωi)� 1+ diW(0)

1+
L∑
j=0

dj

= 1

1+
L∑
j=0

dj

1

1+ (M + 1)
(
Pi
σ2
v

)

which shows that if the SNRs Pi/σ2
v are high,A(ωi) will be very small, resulting in large

spectral peaks in Eq. (6.2.22). The resolvability properties of the AR estimate improve
both when the SNRs increase and when the order M increases. The mutual interaction
of the various sinusoid components cannot be ignored altogether. One effect of this
interaction is biasing in the estimates of the frequencies; that is, even if two nearby
peaks are clearly separated, the peaks may not occur exactly at the desired sinusoid
frequencies, but may be slightly shifted. The degree of bias depends on the relative
separation of the peaks and on the SNRs. With the above qualifications in mind, we can
state that the LPC approach to this problem is one of the most successful ones.

The maximum likelihood (ML), or minimum energy, spectral estimator is given by
the expression [16]

ŜML(ω)= 1

s†ωR−1sω
(6.2.23)

It can be justified by envisioning a bank of narrowband filters, each designed to allow
a sinewave through at the filter’s center frequency and to attenuate all other frequency



6.2. Spectral Analysis of Sinusoids in Noise 243

components. Thus, the narrowband filter with center frequencyω is required to let this
frequency go through unchanged, that is,

A(ω)= s†ωa = 1

while at the same time it is required to minimize the output power

a†Ra = min

The solution of this minimization problem subject to the above constraint is readily
found to be

a = R−1sω

s†ωR−1sω

which gives for the minimized output power at this frequency

a†Ra = 1

s†ωR−1sω

Using Eq. (6.2.16), we find

s†ωR−1sω = 1

σ2
v

[
s†ωsω +

L∑
i,j=1

Dijs†ωsωis
†
ωjsω

]

= 1

σ2
v

[
(M + 1)+

L∑
i,j=1

DijW(ω−ωi)W∗(ω−ωj)
]

and the theoretical ML spectrum becomes in this case:

ŜML(ω)= σ2
v[

(M + 1)+
L∑
i,j=1

DijW(ω−ωi)W∗(ω−ωj)
] (6.2.24)

Example 6.2.3: Determine the matrix D and vector d for the case of L = 2 and arbitrary M.
The matrix S†S is in this case

S†S =
[

W(0) W(ω1 −ω2)
W(ω2 −ω1) W(0)

]
=

[
M + 1 W12

W∗12 M + 1

]

whereW12 =W(ω1 −ω2). Then, D becomes

D = −
[
σ2
vP
−1
1 +M + 1 W12

W∗12 σ2
vP
−1
2 +M + 1

]−1

, or,

D = 1

|W12|2 − (σ2
vP−1

1 +M + 1)(σ2
vP−1

2 +M + 1)

[
σ2
vP
−1
2 +M + 1 −W12

−W∗12 σ2
vP
−1
1 +M + 1

]

and, hence

d = D
[

1
1

]
= 1

|W12|2 − (σ2
vP−1

1 +M + 1)(σ2
vP−1

2 +M + 1)

[
σ2
vP
−1
2 +M + 1−W12

σ2
vP
−1
1 +M + 1−W∗12

]

Using the results of Example 6.2.3, we have carried out a computation illustrating
the three spectral estimates. Figure 6.7 shows the theoretical autoregressive, Bartlett,
and maximum likelihood spectral estimates given by Eqs. (6.2.11), (6.2.22), and (6.2.24),
respectively, for two sinusoids of frequencies

ω1 = 0.4π, ω2 = 0.6π
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and equal powers SNR = 10 log10(P1/σ2
v)= 6 dB, and M = 6. To facilitate the com-

parison, all three spectra have been normalized to 0 dB at the frequencyω1 of the first
sinusoid. It is seen that the lengthM = 6 is too short for the Bartlett spectrum to resolve
the two peaks. The AR spectrum is the best (however, close inspection of the graph will
reveal a small bias in the frequency of the peaks, arising from the mutual interaction of
the two sinewaves). The effect of increasing the SNR is shown in Fig. 6.8, where the SNR
has been changed to 12 dB. It is seen that the AR spectral peaks become narrower, thus
increasing their resolvability.
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Fig. 6.7 and Fig. 6.8 AR, Bartlett, and ML spectrum estimates.

To show the effect of increasingM, we kept SNR = 6 dB, and increased the order to
M = 12 and M = 18. The resulting spectra are shown in Figs. 6.9 and 6.10. It is seen
that all spectra tend to become better. The interplay between resolution, order, SNR,
and bias has been studied in [18,20,23].
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Fig. 6.9 and Fig. 6.10 AR, Bartlett, and ML spectrum estimates.

The main motivation behind the definition (6.2.22) for the pseudospectrum was to
obtain an expression that exhibits very sharp spectral peaks at the sinusoid frequencies
ωi. Infinite resolution can, in principle, be achieved if we can find a polynomial A(z)
that has zeros on the unit circle at the desired frequency angles; namely, at

zi = ejωi , i = 1,2, . . . , L (6.2.25)

Pisarenko’s method determines such a polynomial on the basis of the autocorrelation
matrix R. The desired conditions on the polynomial are

A(zi)= A(ωi)= 0 , i = 1,2, . . . , L (6.2.26)
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where we slightly abuse the notation and write A(ejω)= A(ω). To satisfy these con-
ditions, the degree M of the polynomial A(z) must necessarily be M ≥ L; then, the
remainingM−L zeros of A(z) could be arbitrary. Let a be the vector of coefficients of
A(z), so that

a =

⎡⎢⎢⎢⎢⎢⎣
a0

a1

...
aM

⎤⎥⎥⎥⎥⎥⎦ , A(z)= a0 + a1z−1 + · · · + aMz−M

Noting that A(ω)= s†ωa, Eqs. (6.2.26) may be combined into one vectorial equation

S†a =

⎡⎢⎢⎢⎢⎢⎣
s†ω1

s†ω2

...

s†ωL

⎤⎥⎥⎥⎥⎥⎦ a =

⎡⎢⎢⎢⎢⎢⎣
A(ω1)
A(ω2)

...
A(ωL)

⎤⎥⎥⎥⎥⎥⎦ = 0 (6.2.27)

But then, Eq. (6.2.9) implies that

Ra = σ2
va+ SPS†a = σ2

va

or, that σ2
v must be an eigenvalue of R with a the corresponding eigenvector:

Ra = σ2
va (6.2.28)

The quantity σ2
v is actually the smallest eigenvalue of R. To see this, consider any

other eigenvector a of R, and normalize it to unit norm

Ra = λa , with a†a = 1 (6.2.29)

Then, (6.2.9) implies that

λ = λa†a = a†Ra = σ2
va
†a+ aSPS†a

= σ2
v +

[
A(ω1)∗, A(ω2)∗, . . . , A(ωL)∗

]
⎡⎢⎢⎢⎢⎢⎣
P1

P2

. . .

PL

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
A(ω1)
A(ω2)

...
A(ωL)

⎤⎥⎥⎥⎥⎥⎦
= σ2

v +
L∑
i=1

Pi|A(ωi)|2

which shows that λ is equal to σ2
v shifted by a non-negative amount. If the eigenvector

satisfies the conditions (6.2.26), then the shift in λ vanishes. Thus, the desired poly-
nomial A(z) can be found by solving the eigenvalue problem (6.2.29) and selecting the
eigenvector belonging to the minimum eigenvalue. This is Pisarenko’s method [19]. As
a byproduct of the procedure, the noise power levelσ2

v is also determined, which in turn
allows the determination of the power matrix P, as follows. Writing Eq. (6.2.9) as

R−σ2
vI = SPS†

and acting by S† and S from the left and right, we obtain

P = U†(R−σ2
vI)U , where U = S(S†S)−1 (6.2.30)

Since there is freedom in selecting the remaining M − L zeros of the polynomial
A(z), it follows that there are (M − L)+1 eigenvectors all belonging to the minimum
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eigenvalue σ2
v . Thus, the (M+1)-dimensional eigenvalue problem (6.2.29) has two sets

of eigenvalues: (a) M + 1 − L degenerate eigenvalues equal to σ2
v , and (b) L additional

eigenvalues which are strictly greater than σ2
v .

The (M+ 1−L)-dimensional subspace spanned by the degenerate eigenvectors be-
longing to σ2

v is called the noise subspace. The L-dimensional subspace spanned by
the eigenvectors belonging to the remaining L eigenvalues is called the signal subspace.
Since the signal subspace is orthogonal to the noise subspace. and the L linearly inde-
pendent signal vectors sωi , i = 1,2, . . . , L are also orthogonal to the noise subspace, it
follows that the signal subspace is spanned by the sωis.

In the special case when L =M (corresponding to the Pisarenko’s method), there is
no degeneracy in the minimum eigenvalue, and there is a unique minimum eigenvector.
In this case, allM = L zeros of A(z) lie on the unit circle at the desired anglesωi.

Example 6.2.4: Consider the case L =M = 2. The matrix R is written explicitly as:

R = σ2
vI + P1sω1 s†ω1

+ P2sω2 s†ω2
, or,

R =
⎡⎢⎣ σ2

v + P1 + P2 P1e−jω1 + P2e−jω2 P1e−2jω1 + P2e−2jω2

P1ejω1 + P2ejω2 σ2
v + P1 + P2 P1e−jω1 + P2e−jω2

P1e2jω1 + P2e2jω2 P1ejω1 + P2ejω2 σ2
v + P1 + P2

⎤⎥⎦
It is easily verified that the (unnormalized) vector

a =
⎡⎢⎣ a0

a1

a2

⎤⎥⎦ =
⎡⎢⎣ 1
−(ejω1 + ejω2)
ejω1ejω2

⎤⎥⎦
is an eigenvector of R belonging to λ = σ2

v . In this case, the polynomial A(z) is

A(z) = a0 + a1z−1 + a2z−2 = 1− (ejω1 + ejω2)z−1 + ejω1ejω2z−2

= (1− ejω1z−1)(1− ejω2z−1)

exhibiting the two desired zeros at the sinusoid frequencies. ��
Example 6.2.5: Consider the caseM = 2, L = 1. The matrix R is

R = σ2
vI + P1sω1 s†ω1

=
⎡⎢⎣ σ2

v + P1 P1e−jω1 P1e−2jω1

P1ejω1 σ2
v + P1 P1e−jω1

P1e2jω1 P1ejω1 σ2
v + P1

⎤⎥⎦
It is easily verified that the three eigenvectors of R are

e0 =
⎡⎢⎣ 1
−ejω1

0

⎤⎥⎦ , e1 =
⎡⎢⎣ 0

1
−ejω1

⎤⎥⎦ , e2 =
⎡⎢⎣ 1
ejω1

e2jω1

⎤⎥⎦
belonging to the eigenvalues

λ = σ2
v , λ = σ2

v , λ = σ2
v + 3P1

The first two eigenvectors span the noise subspace and the third, the signal subspace. Any
linear combination of the noise eigenvectors also belongs to λ = σ2

v . For example, if we
take

a =
⎡⎢⎣ a0

a1

a2

⎤⎥⎦ =
⎡⎢⎣ 1
−ejω1

0

⎤⎥⎦− ρ
⎡⎢⎣ 0

1
−ejω1

⎤⎥⎦ =
⎡⎢⎣ 1
−(ρ+ ejω1)
ρejω1

⎤⎥⎦
the corresponding polynomial is

A(z)= 1− (ρ+ ejω1)z−1 + ρejω1z−2 = (1− ejω1z−1)(1− ρz−1)

showing one desired zero at z1 = ejω1 and a spurious zero. ��
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The Pisarenko method can also be understood in terms of a minimization criterion
of the type (6.2.12), as follows. For any set of coefficients a, define the output signal

en =
M∑
m=0

amyn−m = a0yn + a1yn−1 + · · · + aMyn−M

Then, the mean output power is expressed as

E = E[e∗nen]= a†Ra = σ2
v a†a+

L∑
i=1

Pi|A(ωi)|2

Imposing the quadratic constraint
a†a = 1 (6.2.31)

we obtain

E = E[e∗nen]= a†Ra = σ2
v +

L∑
i=1

Pi|A(ωi)|2 (6.2.32)

It is evident that the minimum of this expression is obtained when conditions (6.2.26)
are satisfied. Thus, an equivalent formulation of the Pisarenko method is to minimize
the performance index (6.2.32) subject to the quadratic constraint (6.2.31). The AR
and the Pisarenko spectrum estimation techniques differ only in the type of constraint
imposed on the filter weights a.

We observed earlier that the AR spectral peaks become sharper as the SNR increases.
One way to explain this is to note that in the high-SNR limit or, equivalently, in the
noiseless limit σ2

v → 0, the linear prediction filter tends to the Pisarenko filter, which
has infinite resolution. This can be seen as follows. In the limit σ2

v → 0, the matrix D
defined in Eq. (6.2.17) tends to

D→ −(S†S)−1

and therefore, R−1 given by Eq. (6.2.16) becomes singular, converging to

R−1 → 1

σ2
v

[
I − S(S†S)−1S†

]
Thus, up to a scale factor the linear prediction solution, R−1u0 will converge to

a = [I − S(S†S)−1S†
]
u0 (6.2.33)

The matrix [I − S(S†S)−1S†
]

is the projection matrix onto the noise subspace, and
therefore, a will lie in that subspace, that is, S†a = 0. In the limit σ2

v → 0, the noise
subspace of R consists of all the eigenvectors with zero eigenvalue, Ra = 0. We note
that the particular noise subspace eigenvector given in Eq. (6.2.33) corresponds to the
so-called minimum-norm eigenvector, discussed in Section 6.6.

In his original method, Pisarenko considered the special case when the number of
sinusoids was equal to the filter order, L = M. This implies that the noise subspace is
one-dimensional,M+1−L = 1, consisting of a single eigenvector with zero eigenvalue,
such that Ra = 0. In this case, the (M + 1)×(M + 1) singular matrix R has rank M
and all its principal submatrices are nonsingular. As we mentioned in Section 5.5, such
singular Toeplitz matrices admit a general sinusoidal representation. It is obtained by
setting σ2

v = 0 and L =M in Eq. (6.2.8):

R =
L∑
i=1

Pisωis
†
ωi , or, R(k)=

L∑
i=1

Piejωik
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In summary, we have discussed the theoretical aspects of four methods of estimating
the frequencies of sinusoids in noise. In practice, an estimate of the correlation matrix
R can be obtained in terms of the sample autocorrelations from a block of data values:

R̂(k)= 1

N

N−1−k∑
n=0

yn+ky∗n , k = 0,1, . . . ,M

The quality of the resulting estimates of the eigenvectors will be discussed in Section
6.11 . The AR and Pisarenko methods can also be implemented adaptively. The adaptive
approach is based on the minimization criteria (6.2.12) and (6.2.32) and will be discussed
in Chapter 7, where also some simulations will be presented.

6.3 Superresolution Array Processing

One of the main signal processing functions of sonar, radar, or seismic arrays of sen-
sors is to detect the presence of one or more radiating point-sources. This is a problem
of spectral analysis, and it is the spatial frequency analog of the problem of extracting
sinusoids in noise discussed in the previous section. The same spectral analysis tech-
niques can be applied to this problem. All methods aim at producing a high-resolution
estimate of the spatial frequency power spectrum of the signal field incident on the ar-
ray of sensors. The directions of point-source emitters can be extracted by identifying
the sharpest peaks in this spectrum.

In this section, we discuss conventional (Bartlett) beamforming, as well as the max-
imum likelihood, linear prediction, and eigenvector based methods, all of which are of
current interest [28–88]. We also discuss some aspects of optimum beamforming for
interference nulling [29–31,103–107].

Consider a linear array ofM + 1 sensors equally spaced at distances d, and a plane
wave incident on the array at an angle θ1 with respect to the array normal, as shown
below.

The conventional beamformer introduces appropriate delays at the outputs of each
sensor to compensate for the propagation delays of the wavefront reaching the array.
The output of the beamformer (the “beam”) is the sum

e(t)=
M∑
m=0

ym(t − τm) (6.3.1)

where ym(t), m = 0,1, . . . ,M is the signal at the mth sensor. To reach sensor 1, the
wavefront must travel an extra distance d sinθ1, to reach sensor 2 it must travel dis-
tance 2d sinθ1, and so on. Thus, it reaches these sensors with a propagation delay of
d sinθ1/c, 2d sinθ1/c, and so on. The last sensor is reached with a delay ofMd sinθ1/c
seconds. Thus, to time-align the first and the last sensor, the output of the first sensor
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must be delayed by τ0 =Md sinθ1/c, and similarly, themth sensor is time-aligned with
the last one, with a delay of

τm = 1

c
(M −m)d sinθ1 (6.3.2)

In this case, all terms in the sum (6.3.1) are equal to the value measured at the
last sensor, that is, ym(t − τm)= yM(t), and the output of the beamformer is e(t)=
(M + 1)yM(t), thus enhancing the received signal by a factor of M + 1 and hence its
power by a factor (M + 1)2. The concept of beamforming is the same as that of signal
averaging discussed in Example (2.3.5). If there is additive noise present, it will con-
tribute incoherently to the output power, that is, by a factor of (M + 1), whereas the
signal power is enhanced by (M + 1)2. Thus, the gain in the signal to noise ratio at the
output of the array (the array gain) is a factor ofM + 1.

In the frequency domain, the above delay-and-sum operation becomes equivalent to
linear weighting. Fourier transforming Eq. (6.3.1) we have

e(ω)=
M∑
m=0

ym(ω)e−jωτm

which can be written compactly as:
e = aTy (6.3.3)

where a and y are the (M + 1)-vectors of weights and sensor outputs:

a =

⎡⎢⎢⎢⎢⎢⎣
e−jωτ0

e−jωτ1

...
e−jωτM

⎤⎥⎥⎥⎥⎥⎦ , y =

⎡⎢⎢⎢⎢⎢⎣
y0(ω)
y1(ω)

...
yM(ω)

⎤⎥⎥⎥⎥⎥⎦
From now on, we will concentrate on narrow-band arrays operating at a given fre-

quencyω and the dependence onω will not be shown explicitly. This assumes that the
signals from all the sensors have been subjected to narrow-band prefiltering that leaves
only the narrow operating frequency band. The beamformer now acts as a linear com-
biner, as shown in Fig. 6.11. A plane wave at the operating frequency ω, of amplitude
A1, and incident at the above angle θ1, will have a value at the space-time point (t, r)
given by

A1ejωt−jk·r

Dropping the sinusoidal t-dependence and evaluating this expression on the x-axis,
we have

A1e−jkxx

Fig. 6.11 Beamforming
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where kx is the x-components of the wave vector k

kx = ωc sinθ1

The value of this field at themth sensor, xm =md, is then

A1e−jmk1

where k1 denotes the normalized wavenumber

k1 = kxd = ωdc sinθ1 = 2πd
λ

sinθ1 , λ = wavelength (6.3.4)

This is the spatial analog of the digital frequency. To avoid aliasing effects arising
from the spatial sampling process, the spatial sampling frequency 1/d must be greater
than or equal to twice the spatial frequency 1/λ of the wave. Thus, we must have
d−1 ≥ 2λ−1, or d ≤ λ/2. Since sinθ1 has magnitude less than one, the sampling
condition forces k1 to lie within the Nyquist interval

−π ≤ k1 ≤ π

In this case the correspondence between k1 and θ1, is unique. For any angle θ and
corresponding normalized wavenumber k, we introduce the phasing, or steering vector

sk =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
ejk

e2jk

...
eMjk

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , k = 2πd
λ

sinθ (6.3.5)

In this notation, the plane wave measured at the sensors is represented by the vector

y = A1s∗k1
= A1

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
e−jk1

e−2jk1

...
e−Mjk1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
The steering vector of array weights a, steered towards an arbitrary direction θ, is

also expressed in terms of the phasing vector sk; we have

am = e−jωτm = e−jω(M−m)(d sinθ/c) = e−jMkejmk

or, ignoring the overall common phase e−jMk, we have

a = sk (steering vector towards k = 2πd
λ

sinθ) (6.3.6)

The output of the beamformer, steered towards θ, is

e = aTy = sTky = A1 sTk s∗k1
= A1 s†k1

sk = A1W(k− k1)∗

where W(·) was defined in Section 6.2. The mean output power of the beamformer
steered towards k is

S(k)= E[e∗e]= a†E[y∗yT]a = a†Ra = s†kRsk
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Using y = A1s∗k1
, we find R = E[y∗yT]= P1sk1s†k1

, where P1 = E[|A1|2], and

S(k) = s†kRsk = P1s†ksk1s†k1
sk

= P1|W(k− k1)|2

If the beam is steered on target, that is, ifθ = θ1, or, k = k1, then S(k1)= P1(M+1)2

and the output power is enhanced. The response pattern of the array has the same shape
as the function W(k), and therefore its resolution capability is limited to the width
Δk = 2π/(M + 1) of the main lobe of W(k). Setting Δk = (2πd/λ)Δθ, we find the
basic angular resolution to be Δθ = λ/((M+1)d

)
, or, Δθ = λ/D, whereD = (M+1)d

is the effective aperture of the array. This is the classical Rayleigh limit on the resolving
power of an optical system with aperture D [28].

Next, we consider the problem of resolving the directions of arrival of multiple plane
waves incident on an array in the presence of background noise. We assume L planes
waves incident on an array ofM+1 sensors from angles θi, i = 1,2, . . . , L. The incident
field is sampled at the sensors giving rise to a series of “snapshots.” At the nth snapshot
time instant, the field received at themth sensor has the form [35]

ym(n)= vm(n)+
L∑
i=1

Ai(n)e−jmki , m = 0,1, . . . ,M (6.3.7)

where Ai(n) is the amplitude of the ith wave (it would be a constant independent of
time if we had exact sinusoidal dependence at the operating frequency), and ki are the
normalized wavenumbers related to the angles of arrival by

ki = 2πd
λ

sinθi , i = 1,2, . . . , L (6.3.8)

and vm(n) is the background noise, which is assumed to be spatially incoherent, and
also uncorrelated with the signal amplitudes Ai(n); that is,

E[vm(n)∗vk(n)]= σ2
vδmk , E[vm(n)∗Ai(n)]= 0 (6.3.9)

Eq. (6.3.7) can be written in vector form as follows

y(n)= v(n)+
L∑
i=1

Ai(n)s∗ki (6.3.10)

The autocorrelation matrix of the signal field sensed by the array is

R = E[y(n)∗y(n)T]= σ2
vI +

L∑
i,j=1

skiPijs
†
kj (6.3.11)

where I is the (M+1)×(M+1) unit matrix, and Pij is the amplitude correlation matrix

Pij = E[Ai(n)∗Aj(n)] , 1 ≤ i, j ≤ L (6.3.12)

If the sources are uncorrelated with respect to each other, the power matrix Pij is
diagonal. Introducing the (M + 1)×L signal matrix

S = [sk1 , sk2 , . . . , skL]
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we may write Eq. (6.3.11) as
R = σ2

vI + SPS† (6.3.13)

which is the same as Eq. (6.2.9) of the previous section. Therefore, the analytical expres-
sions of the various spectral estimators can be transferred to this problem as well. We
summarize the various spectrum estimators below:

ŜB(k)= s†kRsk (conventional Bartlett beamformer)

ŜLP(k)= 1∣∣s†kR−1u0
∣∣2 (LP spectrum estimate)

ŜML(k)= 1

s†kR−1sk
(ML spectrum estimate)

For example, for uncorrelated sources Pij = Piδij, the Bartlett spatial spectrum will be

ŜB(k)= s†kRsk = σ2
v(M + 1)+

L∑
i=1

Pi|W(k− ki)|2

which gives rise to peaks at the desired wavenumbers ki from which the angles θi can
be extracted. When the beam is steered towards the ith plane wave, the measured power
at the output of the beamformer will be

ŜB(ki)= σ2
v(M + 1)+Pi(M + 1)2+

∑
j 	=i
Pj|W(ki − kj)|2

Ignoring the third term for the moment, we observe the basic improvement in the
SNR offered by beamforming:

Pi(M + 1)2

σ2
v(M + 1)

= Pi
σ2
v
(M + 1)

If the sources are too close to each other [closer than the beamwidth of W(k)], the
resolution ability of the beamformer worsens. In such cases, the alternative spectral
estimates offer better resolution, with the LP estimate typically having a better perfor-
mance. The resolution capability of both the ML and the LP estimates improves with
higher SNR, whereas that of the conventional beamformer does not.

The Pisarenko method can also be applied here. As discussed in the previous section,
the (M+ 1)-dimensional eigenvalue problem Ra = λa has an L-dimensional signal sub-
space with eigenvalues greater than σ2

v , and an (M+1−L)-dimensional noise subspace
spanned by the degenerate eigenvectors belonging to the minimum eigenvalue of σ2

v .
Any vector a in the noise subspace will have at least L zeros at the desired wavenumber
frequencies ki, that is, the polynomial

A(z)= a0 + a1z−1 + a2z−2 + · · · + aMz−M

will have L zeros at
zi = ejki , i = 1,2, . . . , L

and (M − L) other spurious zeros. This can be seen as follows: If Ra = σ2
va, then

Eq. (6.3.13) implies that

(σ2
vI + SPS†)a = σ2

va ⇒ SPS†a = 0

Dotting with a†, we find that a†SPS†a = 0, and since P is assumed to be strictly
positive definite, it follows that S†a = 0, or

S†a =

⎡⎢⎢⎢⎢⎢⎣
A(k1)
A(k2)

...
A(kL)

⎤⎥⎥⎥⎥⎥⎦ = 0
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The L largest eigenvalues of R correspond to the signal subspace eigenvectors and
can be determined by reducing the original (M + 1)×(M + 1) eigenvalue problem for
R into a smaller L×L eigenvalue problem.

Let e be any eigenvector in the signal subspace, that is, Re = λe, with λ > σ2
v . It

follows that SPS†e = (λ−σ2
v)e. Multiplying both sides by S† we obtain (S†SP)(S†e)=

(λ−σ2
v)(S†e), which states that the L-dimensional vector S†e is an eigenvector of the

L×Lmatrix S†SP. We can turn this into a hermitian eigenvalue problem by factoring the
power matrix P into its square root factors, P = GG†, and multiplying both sides of the
reduced eigenvalue problem by G†. This gives (G†S†SG)(G†S†e)= (λ−σ2

v)(G†S†e).
Thus, we obtain the L×L hermitian eigenvalue problem

F f = (λ−σ2
v)f , where F = G†S†SG , f = G†S†e (6.3.14)

The L signal subspace eigenvalues are obtained from the solution of this reduced
eigenproblem. From each L-dimensional eigenvector f, one can also construct the cor-
responding (M+ 1)-dimensional eigenvector e. Because e lies in the signal subspace, it
can be expressed as a linear combination of the plane waves

e =
L∑
i=1

ciski = [sk1 , sk2 , . . . , skL]

⎡⎢⎢⎢⎢⎢⎣
c1

c2

...
cL

⎤⎥⎥⎥⎥⎥⎦ = Sc

It, then, follows from Eq. (6.3.14) that

f = G†S†e = G†S†Sc ⇒ c = (S†S)−1G−†f

and therefore,
e = Sc = S(S†S)−1G−†f (6.3.15)

Example 6.3.1: Using the above reduction method, determine the signal subspace eigenvectors
and eigenvalues for the case of two equal-power uncorrelated plane waves and arbitrary
M. The 2×2 matrix P becomes proportional to the identity matrix P = P1I. The reduced
matrix F is then

F = P1S†S = P1

[
s†1s1 s†1s2

s†2s1 s†2s2

]
= P1

[
M + 1 W12

W∗12 M + 1

]

where s1 = sk1 , s2 = sk2 , and W12 = W(k1 − k2). In the equal-power case, F is always
proportional to S†S, and therefore, f is an eigenvector of that. It follows that (S†S)−1f will
be a scalar multiple of f and that Eq. (6.3.15) can be simplified (up to a scalar factor) to
e = Sf. The two eigenvalues and eigenvectors of F are easily found to be

λ−σ2
v = P1

(
M + 1± |W12|

)
, f =

[
1

±e−jθ12

]

where θ12 is the phase of W12. Using e = Sf, it follows that the two signal subspace
eigenvectors will be

e = s1 ± e−jθ12 s2

The eigenvalue spread of R is in this case

λmax

λmin
= σ

2
v +

(
M + 1+ |W12|

)
P1

σ2
v

= 1+ SNR · (M + 1+ |W12|
)

where SNR = P1/σ2
v . It can be written in the form

λmax

λmin
= 1+ SNReff ·

(
1+ | cosφ12|

)
where SNReff = SNR · (M + 1) is the effective SNR of the array, or the array gain, and φ12

is the angle between the two signal vectors, that is, cosφ12 = s†1s2/
(‖s1‖ · ‖s2‖

)
. ��
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In practice, estimates of the covariance matrix R are used. For example, if the sensor
outputs are recorded over N snapshots, that is, y(n), n = 0,1, . . . ,N − 1, then, the
covariance matrix Rmay be estimated by replacing the ensemble average of Eq. (6.3.11)
with the time-average:

R̂ = 1

N

N−1∑
n=0

y(n)∗y(n)T (empirical R)

Since the empirical R will not be of the exact theoretical form of Eq. (6.3.11) the
degeneracy of the noise subspace will be lifted somewhat. The degree to which this
happens depends on how much the empirical R differs from the theoretical R. One
can still use the minimum eigenvector a to define the polynomial A(z) and from it an
approximate Pisarenko spectral estimator

ŜP(k)= 1

|A(z)|2 , where z = ejk

which will have sharp and possibly biased peaks at the desired wavenumber frequencies.

Example 6.3.2: Consider the case L =M = 1, defined by the theoretical autocorrelation matrix

R = σ2
vI + P1sk1 s†k1

=
[
σ2
v + P1 P1e−jk1

P1ejk1 σ2
v + P1

]

Its eigenvectors are:

e0 =
[

1
−ejk1

]
, e1 = sk1 =

[
1
ejk1

]

belonging to the eigenvalues λ0 = σ2
v and λ1 = σ2

v + 2P1, respectively. Selecting as the
array vector

a = e0 =
[

1
−ejk1

]

we obtain a polynomial with a zero at the desired location:

A(z)= a0 + a1z−1 = 1− ejk1z−1

Now, suppose that the analysis is based on an empirical autocorrelation matrix R which
differs from the theoretical one by a small amount:

R̂ = R+ΔR

Using standard first-order perturbation theory, we find the correction to the minimum
eigenvalue λ0 and eigenvector e0

λ̂0 = λ0 +Δλ0 , ê0 = e0 +Δc e1

where the first-order correction terms are

Δλ0 = e†0(ΔR)e0

e†0e0

, Δc = e†1(ΔR)e0

(λ0 − λ1)e
†
1e1

The change induced in the zero of the eigenpolynomial is found as follows

â = ê0 =
[

1
−ejk1

]
+Δc

[
1
ejk1

]
=

[
1+Δc

−(1−Δc)ejk1

]

so that
Â(z)= (1+Δc)−(1−Δc)ejk1z−1
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and the zero is now at

z1 = 1−Δc
1+Δc e

jk1 � (1− 2Δc)ejk1

to first-order in Δc. Since Δc is generally complex, the factor (1− 2Δc) will cause both a
change (bias) in the phase of the zero ejk1 , and will move it off the unit circle reducing the
resolution. Another way to see this is to compute the value of the polynomial steered on
target; that is,

Â(k1)= s†k1
a = s†k1

(e0 +Δc e1)= Δc s†k1
e1 = 2Δc

which is small but not zero. ��

The high resolution properties of the Pisarenko and other eigenvector methods de-
pend directly on the assumption that the background noise field is spatially incoherent,
resulting in the special structure of the autocorrelation matrix R. When the noise is
spatially coherent, a different eigenanalysis must be carried out. Suppose that the co-
variance matrix of the noise field v is

E[v∗vT]= σ2
vQ

where Q reflects the spatial coherence of v. Then the covariance matrix of Eq. (6.3.13)
is replaced by

R = σ2
vQ + SPS† (6.3.16)

The relevant eigenvalue problem is now the generalized eigenvalue problem

Ra = λQa (6.3.17)

Consider any such generalized eigenvector a, and assume it is normalized such that

a†Qa = 1 (6.3.18)

Then, the corresponding eigenvalue is expressed as

λ = λa†Qa = a†Ra = σ2
va
†Qa+ a†SPS†a = σ2

v + a†SPS†a

which shows that the minimum eigenvalue is σ2
v and is attained whenever a†SPS†a = 0,

or equivalently (assuming that P has full rank), S†a = 0, or, A(ki)= 0, i = 1,2, . . . , L.
Therefore, the eigenpolynomial A(z) can be used to determine the wavenumbers ki.

Thus, the procedure is to solve the generalized eigenvalue problem and select the
minimum eigenvector. This eigenvalue problem is also equivalent to the minimization
problem

E = a†Ra = min , subject to a†Qa = 1 (6.3.19)

This criterion, and its solution as the minimum eigenvector, is equivalent to the
unconstrained minimization of the Rayleigh quotient, that is,

a†Ra

a†Qa
= min � Ra = λminQa (6.3.20)

The practical implementation of the method requires knowledge of the noise covari-
ance matrix Q, which is not always possible to obtain. Covariance difference methods
[71–74] can be used in the case of unknown Q. Such methods work with measurements
from two different arrays, translated or rotated with respect to each other. Assuming
that the background noise is invariant under translation or rotation, the covariance ma-
trices of the two arrays will be R1 = S1P1S

†
1 + σ2

vQ and R2 = S2P2S
†
2 + σ2

vQ. The
eigenstructure of the covariance difference R1 −R2 = S1P1S

†
1 − S2P2S

†
2 can be used to

extract the signal information.
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The two spectral analysis problems discussed in this and the previous section—
direction finding and harmonic retrieval—are dual to each other; one dealing with spatial
frequencies and the other with time frequencies. The optimum processing part is the
same in both cases. The optimum processor does not care how its inputs are supplied, it
only “sees” the correlations among the inputs and its function is to “break down” these
correlations thereby extracting the sinusoidal components. The two cases differ only in
the way the inputs to the optimum processor are supplied. This conceptual separation
between the input part and the optimum processing part is shown in Fig. 6.12. In the
time series case, the correlations among the inputs are sequential correlations in time,
whereas in the array case they are spatial correlations, such as those that exist along a
coherent wavefront.

Fig. 6.12 Duality between time series and array problems.

A problem related, but not identical, to direction finding is that of optimum beam-
forming for interference nulling [29–31,103–107]. In this case, one of the plane waves,
say, sk1 , is assumed to be a desired plane wave with known direction of arrival θ1, or
wavenumber k1. The other plane waves are considered as interferers or jammers to
be nulled. Assuming for simplicity uncorrelated sources, the covariance matrix (6.3.11)
may be decomposed into a part due to the desired signal and a part due to the noise
plus interference:

R = σ2
vI +

L∑
i=1

Pi sis
†
i = P1s1s†1 +

[
σ2
vI +

L∑
i=2

Pi sis
†
i

]
= P1s1s†1 +Rn

where we denoted si = ski . The output power of the array with weights a will be

E = a†Ra = P1|s†1a|2 + a†Rna (6.3.21)

The first term is the output power due to the desired signal; the second term is
due to the presence of noise plus interference. This expression suggests two possible
optimization criteria for a. First, choose a to maximize the relative signal to noise plus
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interference ratio (SNIR):

SNIR = P1|s†1a|2
a†Rna

= max (6.3.22)

The second criterion is to keep the output of the array toward the look direction s1

fixed, while minimizing the output power:

s†1a = 1 and E = a†Ra = P1 + a†Rna = min (6.3.23)

This is equivalent to minimizing the noise plus interference term a†Rna. These two
criteria are essentially equivalent. This is seen as follows. Equation (6.3.22) is equivalent
to minimizing the inverse function SNIR−1. Adding one to it, we obtain the equivalent
criterion

1+ SNIR−1 = 1+ a†Rna

P1|s†1a|2 =
a†Ra

P1|s†1a|2 = min

This is identical to the Rayleigh quotient (6.3.20) with the choice Q = P1s1s†1. It is
equivalent to the minimum eigenvector solution of

Ra = λQa = λP1s1s†1a = μs1 ⇒ a = μR−1s1

where we put all the scalar factors into μ. Similarly, the constraint s†1a = 1 implies
that a†Q1a = 1 with Q1 = s1s†1. It follows from Eq. (6.3.19), applied with Q1, that the
solution of Eq. (6.3.23) is again the generalized eigenvector

Ra = λ1Q1a = λ1s1s†1a = μ1s1 ⇒ a = μ1R−1s1

Thus, up to a scale factor, the optimum solution for both criteria is

a = R−1s1 (6.3.24)

This solution admits, yet, a third interpretation as the Wiener solution of an ordinary
mean-square estimation problem. The term y1(n)= A1(n)s∗1 of Eq. (6.3.10) is the de-
sired signal. A reference signal x(n) could be chosen to correlate highly with this term
and not at all with the other terms in Eq. (6.3.10). For example, x(n)= f(n)A1(n). The
array weights can be designed by demanding that the scalar output of the array, aTy(n),
be the best mean-square estimate of x(n). This gives the criterion

E
[|x(n)−aTy(n)|2] = E[|x(n)|2]− a†r− r†a+ a†Ra

where we set r = E[x(n)y(n)∗]. Minimizing with respect to a (and a∗) gives the Wiener
solution a = R−1r. Now, because x(n) is correlated only with y1(n), it follows that r
will be proportional to s1:

r = E[x(n)y(n)∗]= E[x(n)y1(n)∗]= E[x(n)A1(n)∗] s1

Thus, again up to a scale, we obtain the solution (6.3.24). Using the matrix inversion
lemma (see Problem 6.6), we can write the inverse of R = P1s1s†1 +Rn, in the form

R−1 = R−1
n − cR−1

n s1s†1R−1
n , c = (P−1

1 + s†1R−1
n s1)−1

Acting by both sides on s1, we find

R−1s1 = c1R−1
n s1 , c1 = cP−1

1
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Therefore, the optimal solution can also be written (up to another scale factor) in
terms of the noise plus interference covariance matrix Rn:

a = R−1
n s1 (6.3.25)

These solutions, known as steered solutions, are sometimes modified to include arbi-
trary tapering weights for the array—replacing the steering vector s1 with a generalized
steering vector

s =

⎡⎢⎢⎢⎢⎢⎣
b0

b1ejk1

...
bMejk1M

⎤⎥⎥⎥⎥⎥⎦ = B s1 , B = diag{b0, b1, . . . , bM} (6.3.26)

The weightsbm can be chosen to attain a prescribed shape for the quiescent response
of the array in absence of interference. Typical choices are (with k1 = 0)

s =

⎡⎢⎢⎢⎢⎢⎣
1
0
...
0

⎤⎥⎥⎥⎥⎥⎦ , s =

⎡⎢⎢⎢⎢⎢⎣
1
1
...
1

⎤⎥⎥⎥⎥⎥⎦
To appreciate the properties of the optimum solution, we consider the case of one

jammer, so that
R = P1s1s†1 +Rn , Rn = σ2

vI + P2s2s†2

Using the matrix inversion lemma on R−1
n , we obtain

R−1
n =

1

σ2
v

[
I − 1

σ2
vP−1

2 + s†2s2

s2s†2

]

Therefore, the optimum solution given by Eq. (6.3.25) becomes

a = R−1
n s1 = 1

σ2
v

[
s1 − P2W(k2 − k1)

σ2
v + P2(M + 1)

s2

]

where we used s†2s2 = M + 1 and s†2s1 = W(k2 − k1). Dropping the overall factor of
1/σ2

v , we find for the array pattern as a function of wavenumber k or angle θ

A(k)= s†ka =W(k− k1)− P2W(k2 − k1)
σ2
v + P2(M + 1)

W(k− k2) (6.3.27)

In the absence of the jammer, P2 = 0, we obtain the usual quiescent Bartlett response,
W(k− k1). The presence of the second term, called a retrodirective beam, will partially
distort the quiescent pattern but it will suppress the jammer. Indeed, the array response
steered toward the jammer at k = k2, becomes

A(k2)=W(k2 − k1)− P2W(k2 − k1)
σ2
v + P2(M + 1)

W(0)= W(k2 − k1)
σ2
v + P2(M + 1)

The ratio A(k2)/W(k2 − k1) is the array response, in the direction of the jammer,
relative to the quiescent response. Thus, if the signal to noise ratio SNR2 = P2/σ2

v is
large, the jammer will be suppressed. Only in the limit of infinite SNR is the jammer
completely nulled.

The reason for the incomplete nulling can be traced, as in the case of linear predic-
tion, to the linear constraint on the weights (6.3.23). To get exact nulling of the jammers,
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we must force the zeros of the polynomial a to lie on the unit circle at the jammer posi-
tions. As suggested by Problem 6.13, this can be accomplished by imposing a quadratic
constraint a†Qa = const., where Q must be chosen as Q = σ2

vI + P1s1s†1 instead of
Q = P1s1s†1. The optimum weight is the minimum eigenvector solution of the general-
ized eigenproblem Ra = λQa and will have exact zeros at the jammer positions. As in
the linear prediction case, the linearly constrained optimum beamformer solution tends
to this eigenvector solution in the limit σ2

v → 0.

6.4 Eigenvector Methods

The single most important property of eigenvector methods is that, at least in principle,
they produce unbiased frequency estimates with infinite resolution, regardless of the
signal to noise ratios. This property is not shared by the older methods. For example,
the resolution of the Bartlett method is limited by the array aperture, and the resolution
of the linear prediction and maximum likelihood methods degenerates with decreasing
SNRs. Because of this property, eigenvector methods have received considerable atten-
tion in signal processing and have been applied to several problems, such as harmonic
retrieval, direction finding, echo resolution, and pole identification [19,45–99]. In the
remainder of this chapter, we discuss the theoretical aspects of eigenvector methods in
further detail, and present several versions of such methods, such as MUSIC, Minimum-
Norm, and ESPRIT.

We have seen that the eigenspace of the covariance matrixR consists of two mutually
orthogonal parts: the (M+1−L)-dimensional noise subspace spanned by the eigenvec-
tors belonging to the minimum eigenvalue σ2

v , and the L-dimensional signal subspace
spanned by the remaining L eigenvectors having eigenvalues strictly greater than σ2

v .
Let ei, i = 0,1, . . . ,M, denote the orthonormal eigenvectors of R in order of increasing
eigenvalue, and let K = M + 1 − L denote the dimension of the noise subspace. Then,
the first K eigenvectors, ei, i = 0,1, . . . , K − 1, form an orthonormal basis for the noise
subspace, and the last L eigenvectors, ei, i = K,K+1, . . . ,M, form a basis for the signal
subspace. We arrange these basis vectors into the eigenvector matrices:

EN = [e0, e1, . . . , eK−1], ES = [eK, eK+1, . . . , eM] (6.4.1)

Their dimensions are (M + 1)×K and (M + 1)×L. The full eigenvector matrix of R is:

E = [EN, ES]= [e0, e1, . . . , eK−1, eK, eK+1, . . . , eM] (6.4.2)

The orthonormality of the eigenvectors is expressed by the unitarity property E†E =
I, where I is the (M+1)-dimensional unit matrix. The unitarity can be written in terms
of the submatrices (6.4.1):

E†NEN = IK , E†NES = 0 , E†SES = IL (6.4.3)

where IK and IL are the K×K and L×L unit matrices. The completeness of the eigenvec-
tors is expressed also by the unitarity of E, i.e., EE† = I. In terms of the submatrices, it
reads:

ENE
†
N + ESE†S = I (6.4.4)

These two terms are the projection matrices onto the noise and signal subspaces.
We have seen that the L signal direction vectors ski belong to the signal subspace, and
therefore, are expressible as linear combinations of ES. It follows that the signal matrix
S = [sk1 , . . . , skL] is a non-orthogonal basis of the signal subspace and must be related
to ES by S = ESC, where C is an L×L invertible matrix. Using the orthonormality of ES,
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it follows that S†S = C†E†SESC = C†C. Thus, the projector onto the signal subspace
may be written as

PS = ESE†S = (SC−1)(C−†S†)= S(C†C)−1S† = S(S†S)−1S† (6.4.5)

We may also obtain a non-orthogonal, but useful, basis for the noise subspace. We
have seen that an (M+1)-dimensional vector e lies in the noise subspace—equivalently,
it is an eigenvector belonging to the minimum eigenvalue σ2

v—if and only if the corre-
sponding order-M eigenfilter E(z) has L zeros on the unit circle at the desired signal
zeros, zi = ejki , i = 1,2, . . . , L, and has M − L = K − 1 other spurious zeros. Such a
polynomial will factor into the product:

E(z)= A(z)F(z)= A(z)[f0 + f1z−1 + · · · + fK−1z−(K−1)] (6.4.6)

where the zeros of F(z) are the spurious zeros, and A(z) is the reduced-order polyno-
mial of order L whose zeros are the desired zeros; that is,

A(z)=
L∏
i=1

(1− ejkiz−1)= 1+ a1z−1 + · · · + aLz−L (6.4.7)

Introducing the K delayed polynomials:

Bi(z)= z−iA(z) , i = 0,1, . . . , K − 1 (6.4.8)

we may write Eq. (6.4.6) in the form

E(z)= f0B0(z)+f1B1(z)+· · · + fK−1BK−1(z)=
K−1∑
i=0

fiBi(z) (6.4.9)

and in coefficient form

e =
K−1∑
i=0

fi bi = [b0, b1, . . . , bK−1]

⎡⎢⎢⎢⎢⎢⎣
f0
f1
...
fK−1

⎤⎥⎥⎥⎥⎥⎦ ≡ B f (6.4.10)

Because each of the polynomials Bi(z) has L desired zeros, it follows that the cor-
responding vectors bi will lie in the noise subspace. Thus, the matrix B defined in
Eq. (6.4.10) will be a non-orthogonal basis of the noise subspace. It is a useful ba-
sis because the expansion coefficients f of any noise subspace vector e are the coef-
ficients of the spurious polynomial F(z) in the factorization (6.4.6). Put differently,
Eq. (6.4.10) parametrizes explicitly the spurious degrees of freedom arising from the
K-fold degeneracy of the minimum eigenvalue. The basis vectors bi, considered as
(M + 1)-dimensional vectors, are simply the delayed versions of the vector of coeffi-
cients, a = [1, a1, . . . , aL]T, of the polynomial A(z), that is,

bi =
[
0, . . . , 0︸ ︷︷ ︸
i zeros

, 1, a1, . . . , aL, 0, . . . , 0︸ ︷︷ ︸
K−1−i zeros

]T
(6.4.11)

For example, in the case L = 2 andM = 5, we have K =M + 1− L = 4 and B is:

B = [b0, b1, b2, b3]=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
a1 1 0 0
a2 a1 1 0
0 a2 a1 1
0 0 a2 a1

0 0 0 a2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
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It follows that the basis B must be linearly related to the orthonormal basis EN by
B = ENC, where C is a K×K invertible matrix. Then, B†B = C†C and the projector onto
the noise subspace becomes:

PN = ENE†N = (BC−1)(C−†B†)= B(C†C)−1B† = B(B†B)−1B† (6.4.12)

Combining Eqs. (6.4.12) and (6.4.5), we may write the completeness relation (6.4.4)
in terms of the non-orthogonal bases B and S:

B(B†B)−1B† + S(S†S)−1S† = I (6.4.13)

The objective of all eigenvector methods is to estimate the signal zeros zi = ejki ,
i = 1,2, . . . , L. All methods begin with an eigenanalysis of R, such that EN and ES are
available. In practice, the eigenanalysis is based on the sample covariance matrix R̂
defined on the basis of a finite number of snapshots, say N:

R̂ = 1

N

N−1∑
n=0

y(n)∗y(n)T (6.4.14)

Sometimes, a symmetrized version is preferred, obtained from R̂ by

R̂s = 1

2
(R̂+ JR̂∗J) (6.4.15)

where J the (M+1)-dimensional reversing matrix. The matrix R̂s is invariant under re-
versal, that is, JR̂sJ = R̂∗s . This version is appropriate when the theoreticalR is Toeplitz.
This case arises if and only if the L×L power matrix P is diagonal; that is, when the L
sources are mutually uncorrelated. As the number of snapshots increases, the eigen-
structure of R̂ or R̂s becomes a better and better approximation of the eigenstructure
of R. Such asymptotic statistical properties will be discussed in Section 6.11. Next, we
discuss several practical approaches.

6.5 MUSIC method

Let Ei(z) denote the eigenfilters of the noise subspace eigenvectors ei, i = 0,1, . . . , K−1.
According to Eq. (6.4.5), we can write Ei(z)= A(z)Fi(z), which shows that Ei(z) have
a common set of L zeros at the desired signal locations, but each may have a different
set of K − 1 spurious zeros. It is possible for these spurious zeros to lie very close
to or on the unit circle. Therefore, if only one eigenfilter is used, there may be an
ambiguity in distinguishing the desired zeros from the spurious ones. The multiple
signal classification (MUSIC) method [46,48] attempts to average out the effect of the
spurious zeros by forming the sum of the magnitude responses of the K noise subspace
eigenfilters, that is, setting z = ejk,

1

K

K−1∑
i=0

|Ei(k)|2 = |A(k)|2 1

K

K−1∑
i=0

|Fi(k)|2

Because the polynomials Fi(z) are all different, the averaging operation will tend to
smear out any spurious zero of any individual term in the sum. Thus, the above expres-
sion will effectively vanish only at the L desired zeros of the common factor|A(k)|2.
The MUSIC pseudospectrum is defined as the inverse

SMUS(k)= 1

1

K

K−1∑
i=0

|Ei(k)|2
(6.5.1)
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It will exhibit peaks at the L desired wavenumbers ki, i = 0,1, . . . , L. The sum may
also be replaced by a weighted sum [54]. The sum may be written compactly in terms
of the projection matrices onto the noise or signal subspaces. Noting that |Ei(k)|2 =
s†k(eie

†
i )sk, we find

K−1∑
i=0

|Ei(k)|2 = s†k

⎡⎣K−1∑
i=0

eie
†
i

⎤⎦ sk = s†kENE
†
Nsk = s†k(I − ESE†S)sk

where we used Eq. (6.4.4). The practical version of the MUSIC method is summarized
below:

1. Based on a finite number of snapshots, compute the sample covariance matrix
R̂, solve its eigenproblem, and obtain the estimated eigenvector matrix E with
eigenvalues arranged in increasing order.

2. Estimate the dimension K of the noise subspace as the number of the smallest,
approximately equal, eigenvalues. This can be done systematically using the AIC
or MDL criteria discussed later. The estimated number of plane waves will be
L =M + 1−K. Divide E into its noise and signal subspace parts, EN and ES.

3. Compute the spectrum (6.5.1) and extract the desired wavenumbers ki from the
L peaks in this spectrum.

The Akaike (AIC) and minimum description length (MDL) information-theoretic cri-
teria have been suggested to determine the number of plane waves that are present, or
equivalently, the dimension of the noise subspace [61]. They are defined by

AIC(k) = −2NkL(k)+2(M + 1− k)(M + 1+ k)

MDL(k) = −NkL(k)+1

2
(M + 1− k)(M + 1+ k)log(N)

(6.5.2)

for k = 1,2, . . . ,M + 1, where N is the number of snapshots and L(k) is a likelihood
function defined as the log of the ratio of the harmonic and arithmetic means of the
first k estimated eigenvalues {λ̂0, λ̂1, . . . , λ̂k−1} of R̂; namely,

L(k)= ln

⎡⎢⎢⎣ (λ̂0λ̂1 · · · λ̂k−1)1/k

1

k
(λ̂0 + λ̂1 + · · · + λ̂k−1)

⎤⎥⎥⎦
The dimension K of the noise subspace is chosen to be that k that minimizes the

functions AIC(k) or MDL(k). The above definition is equivalent to that of [61], but
produces the value of K instead of L. The routine aicmdl (see Appendix B) takes as
inputs the M + 1 estimated eigenvalues in increasing order and the number N, and
computes the values of the AIC and MDL functions. Once K is known, an estimate of
the minimum eigenvalue can be obtained by

σ̂2
v = λ̂min = 1

K
(λ̂0 + λ̂1 + · · · + λ̂K−1) (6.5.3)

Next, we present some simulation examples. First, we compare the MUSIC method
against the linear prediction method. We considered two uncorrelated equal-power
plane waves incident on an array of 8 sensors (M = 7). The SNR of the waves, de-
fined by SNRi = 10 log10(Pi/σ2

v), was −5 dB and their wavenumbers k1 = 0.2π and
k2 = 0.4π. For half-wavelength array spacing (d = λ/2), these correspond, through
(6.3.8), to the angles of arrival θ1 = 11.54o and θ2 = 23.58o.

The number of snapshots was N = 500. The snapshots were simulated using
Eq. (6.3.10). Each v(n) was generated as a complex vector of M + 1 zero-mean in-
dependent gaussian components of variance σ2

v = 1.
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Note that to generate a zero-mean complex random variable v of variance σ2
v , one

must generate two zero-mean independent real random variables v1 and v2, each with
variance σ2

v/2 and set v = v1 + jv2; then, E[v∗v]= E[v2
1]+E[v2

2]= 2(σ2
v/2)= σ2

v .
The amplitudes Ai(n) were assumed to have only random phases; that is, Ai(n)=
(Pi)1/2ejφin , whereφin, were independent angles uniformly distributed in [0,2π]. The
routine snap (see Appendix B) takes as input an integer seed, generates a snapshot vec-
tor y, and updates the seed. Successive calls to snap, in conjunction with the (complex
version) of the routine sampcov, can be used to generate the sample covariance matrix
R̂. In this particular example, we used the symmetrized version R̂s, because the two
sources were uncorrelated.

Figure 6.13 shows the MUSIC spectrum computed using Eq. (6.5.1) together with the
LP spectrum SLP(k)= 1/|s†ka|2, where a = R̂−1

s u0. Because each term in the sum (6.5.1)
arises from a unit-norm eigenvector, we have normalized the LP vector a also to unit
norm for the purpose of plotting the two spectra on the same graph. Increasing the
number of snapshots will improve the MUSIC spectrum because the covariance matrix
R̂s will become a better estimate of R, but it will not improve the LP spectrum because
the theoretical LP spectrum does not perform well at low SNRs.
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Fig. 6.13 MUSIC and LP spectra.

To facilitate the computation and manipulation of spectra, we have included the
following small routines. The routine norm converts a vector a to a unit-norm vector.
The routine fresp computes the magnitude response squared, |A(k)|2 = |s†ka|2, of an
Mth order filter a at a specified number of equally-spaced frequency points within the
right-half of the Nyquist interval, 0 ≤ k ≤ π. It can be modified easily to include the en-
tire Nyquist interval or any subinterval. The routine invresp inverts a given spectrum,
S(k)→ 1/S(k). The routines abs2db and db2abs convert a spectrum from absolute
units to decibels and back, S(k)= 10 log10 S(k). The routine select picks out any eigen-
vector from the M + 1 ones of the eigenvector matrix E. The routine music computes
Eq. (6.5.1) over a specified number of frequency points. It is built out of the routines
select, fresp, and invresp.

In the second simulation example, we increased the SNR of the two plane waves to
10 dB and reduced the number of snapshots to N = 100. The theoretical and empirical
eigenvalues of R and R̂s, were found to be

i 0 1 2 3 4 5 6 7

λi 1 1 1 1 1 1 61.98 100.02

λ̂i 0.70 0.76 0.83 0.87 1.05 1.28 64.08 101.89
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The values of the AIC and MDL functions were

k 1 2 3 4 5 6 7 8

AIC(k) 126.0 120.3 111.4 98.7 87.2 81.1 2544.2 3278.2
MDL(k) 145.1 138.3 127.4 111.9 94.4 77.0 1291.6 1639.1
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Fig. 6.14 Spectra of the first three noise subspace eigenvectors.

Both functions achieve their minimum value at K = 6 and therefore, L = M + 1 −
K = 2. The estimated value of σ2

v , computed by Eq. (6.5.3), was σ̂2
v = 0.915. Figure

6.14 shows the spectra of the first three noise subspace eigenvectors; namely, Si(k)=
1/|Ei(k)|2 = 1/|s†kei|2, for i = 0,1,2. We note the presence of a common set of peaks
at the two desired wavenumbers and several spurious peaks. The spurious peaks are
different, however, in each spectrum and therefore, the averaging operation will tend
to eliminate them. The averaged MUSIC spectrum, based on all K = 6 noise subspace
eigenvectors, is plotted in Figure 6.15 using the same scale as in Fig. 6.14.

The averaging operation has had two effects. First, the removal of all spurious peaks
and second, the broadening and reduction in sharpness of the two desired peaks. This
broadening is the result of statistical sampling; that is, using R̂ instead ofR, causes small
biases in the peaks of individual eigenvectors about their true locations. These biases
are not inherent in the theoretical method, as they are in the linear prediction case; they
are statistical in nature and disappear in the limit of large number of snapshots. Figure
6.15 also shows the performance of the minimum-norm method, which we discuss next.
It appears to produce somewhat sharper peaks than MUSIC, but it can sometimes exhibit
higher levels of spurious peaks.

6.6 Minimum-Norm Method

The minimum-norm method [47,53] attempts to eliminate the effect of spurious zeros
by pushing them inside the unit circle, leaving the L desired zeros on the circle. This
is accomplished by finding a noise subspace vector d = [d0, d1, . . . , dM]T such that the
corresponding eigenfilter D(z) will have all its spurious zeros within the unit circle.
This means that in the factorization (6.4.6), D(z)= A(z)F(z), the spurious polynomial
F(z) must be chosen to have all its zeros strictly inside the unit circle, equivalently,
F(z) must be a minimum-phase polynomial. If F(z) were the prediction-error filter of
a linear prediction problem, then it would necessarily be a minimum-phase filter. Thus,
the design strategy for d is to make F(z) a linear prediction filter. This can be done by
requiring that d have minimum norm subject to the constraint that its first coefficient
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be unity; that is,
d†d = min , subject to u†0d = d0 = 1 (6.6.1)

The minimization is carried over the noise subspace vectors. In the B basis (6.4.10),
the vector d is expressed by d = B f, where f are the coefficients of F(z), and the
constraint equation becomes u†0B f = 1. With the exception of b0, all basis vectors bi
start with zero; therefore, u†0B = [u†0b0,u

†
0b1, . . . ,u

†
0bK−1]= [1,0, . . . ,0]≡ u†, that is, a

K-dimensional unit vector. Therefore, in the B basis Eq. (6.6.1) becomes

d†d = f†Raa f = min , subject to u†f = 1 (6.6.2)

where we set Raa = B†B. This is recognized as the Toeplitz matrix of autocorrelations
of the filter a, as defined in Section 3.3. For the 6×4 example above, we verify

Raa = B†B =

⎡⎢⎢⎢⎣
Raa(0) Raa(1)∗ Raa(2)∗ 0
Raa(1) Raa(0) Raa(1)∗ Raa(2)∗

Raa(2) Raa(1) Raa(0) Raa(1)∗

0 Raa(2) Raa(1) Raa(0)

⎤⎥⎥⎥⎦
where Raa(0)= |a0|2 + |a1|2 + |a2|2, Raa(1)= a1a∗0 + a2a∗1 , Raa(2)= a2a∗0 , and
Raa(3)= 0. Note that the autocorrelation function of an order-M filter a vanishes for
lags greater than M + 1. It follows that Eq. (6.6.2) represents an ordinary linear predic-
tion problem and its solution f will be a minimum-phase filter with all its zeros inside
the unit circle. Up to a scale factor, we may write this solution as f = R−1

aau = (B†B)−1u.
Writing u = B†u0, we have f = (B†B)−1B†u0, and the solution for d becomes

d = B f = B(B†B)−1B†u0 = ENE†Nu0 (6.6.3)

This is the solution of criterion (6.6.1) up to a scale. Interestingly, the locations of
the spurious zeros do not depend on the signal to noise ratios, but depend only on the
desired zeros on the unit circle. This follows from the fact that the solution for f depends
only on B. Using Eq. (6.4.13), we may also write d in terms of the signal subspace basis

d = [
I − ESE†S

]
u0 =

[
I − S(S†S)−1S†

]
u0

Recall from Section 6.2 that this is the large-SNR limit of the LP solution. Noting that
E†Nu0, is the complex conjugate of the top row of the eigenvector matrix EN, we write
Eq. (6.6.3) explicitly as a linear combination of noise subspace eigenvectors

d =
K−1∑
i=0

E∗0iei (6.6.4)

where E∗0i the conjugate of the 0i-th matrix element of E. The subroutine minorm com-
putes d using Eq. (6.6.4). The corresponding pseudospectrum estimate is defined as the
inverse magnitude response of the filter d

SMIN(k)= 1

|D(k)|2 =
1

|s†kd|2
(6.6.5)

The practical implementation of this method requires the same two initial steps as
MUSIC; namely, eigenanalysis of R̂ and estimation of K. In Fig. 6.15, the minimum-norm
spectrum was computed by calling the routines minorm. The vector d was normalized to
unit norm to make a fair comparison with the MUSIC spectrum. Looking at the spectra is
not the best way to evaluate this method because the spurious zeros—even though inside
the unit circle—interact with the desired zeros to modify the shape of the spectrum.
The minimum-norm method is better judged by comparing the theoretical and empirical
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zeros of the polynomialD(z), computed fromR and R̂. They are shown in the following
table. The first two zeros are the desired ones.

zeros of D(z)
theoretical empirical

|zi| arg(zi)/π |zi| arg(zi)/π
1.0000 0.2000 0.9989 0.2020
1.0000 0.4000 1.0059 0.4026
0.8162 −0.1465 0.8193 −0.1441
0.7810 −0.4251 0.7820 −0.4227
0.7713 −0.7000 0.7759 −0.6984
0.8162 0.7465 0.8188 0.7481
0.7810 −0.9749 0.7832 −0.9729
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Fig. 6.15 MUSIC and min-norm spectra.

The main idea of the minimum-norm method was to separate the desired zeros from
the spurious ones by pushing the latter inside the unit circle. In some applications of
eigenvector methods, such as pole identification, the desired zeros lie themselves inside
the unit circle (being the poles of a stable and causal system) and therefore, cannot be
separated from the spurious ones. To separate them, we need a modification of the
method that places all the spurious zeros to the outside of the unit circle. This can be
done by replacing the vector f by its reverse fR = J f∗, where J is the K×K reversing
matrix. The resulting polynomial will be the reverse of F(z), with all its zeros reflected
to the outside of the unit circle. The reverse vector fR is the backward prediction filter
obtained by minimizing (6.6.2) subject to the constraint that its last element be unity.
Using the reversal invariance of Raa, namely, JRaaJ = R∗aa, we find

fR = J f∗ = J(R−1
aa)∗u = R−1

aaJu = R−1
aav

where v = Ju = [0, . . . ,0,1]T is the reverse of u. With the exception of bK−1, the last
element of all basis vectors bi is zero. Denoting by v0, the reverse of u0, it follows that
v†0B = [0,0, . . . ,0, aL]= aLv†. Thus, up to a scale factor, v can be replaced by B†v0,
and hence, The vector d becomes

d = B fR = B(B†B)−1B†v0 = ENE†Nv0 (6.6.6)

Up to a scale, this is the minimum-norm vector subject to the constraint that its
last element be unity; that is, v†0d = dM = 1. In terms of the matrix elements of the
eigenvector matrix E it reads

d =
K−1∑
i=0

E∗Miei (6.6.7)
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where E∗Mi is the conjugate of the last row of E. The spurious zeros of this vector will
lie outside the unit circle. We may refer to this method as the modified minimum-norm
method.

6.7 Reduced-Order Method

The basis B of the noise subspace has very special structure, being constructed in terms
of the delayed replicas of the same reduced-order vector a. It is evident from Eq. (6.4.11)
that a can be extracted from any column bi or B by advancing it by i units. The B basis
is linearly related to the orthonormal eigenvector basis by B = ENC with some K×K
invertible matrix C. Thus, the vector bi is expressible as a linear combination of the
noise subspace eigenvectors

bi =
K−1∑
j=0

ejCji , i = 0,1, . . . , K − 1

This vector has a total of K−1 vanishing coefficients, namely, the first i and the last
K−1− i coefficients. Component-wise, we may write bim = 0, for 0 ≤m ≤ i−1 and for
i+ L+ 1 ≤ m ≤ M. This vector may be specified up to an overall scale factor because
we are interested only in the zeros of the reduced-order vector a. Therefore, we may
arbitrarily fix one of the coefficients Cji to unity. For example, we may single out the
0th eigenvector:

bi = e0 +
K−1∑
j=1

ejCji (6.7.1)

If e0 happens to be absent from the sum, we may single out e1 and so on. The
coefficient bii will no longer be unity, but may be normalized so later. TheK−1 unknown
coefficients Cji, j = 1,2, . . . , K − 1 can be determined by the K − 1 conditions that the
first i and lastK−1−i coefficients of bi be zero. Written in terms of the matrix elements
of the eigenvector matrix E, these conditions read for each i = 0,1, . . . , K − 1:

Em0 +
K−1∑
j=1

EmjCji = 0 , for 0 ≤m ≤ i− 1 and i+ L+ 1 ≤m ≤M (6.7.2)

Thus, solving the linear Eqs. (6.7.2) for the coefficients Cji and substituting in Eq.
(6.7.1), we obtain bi and, advancing it by i units, the reduced-order vector a. Because
Bi(z)= z−iA(z), the polynomial Bi(z) has no spurious zeros. In effect, forming the
linear combination Eq. (6.7.1) of noise subspace eigenvectors removes the spurious zeros
completely by placing them at the origin of the z-plane. In a sense, this procedure carries
the philosophy of the minimum-norm method further.

When the theoretical R is replaced by the empirical R̂ and the corresponding EN is
replaced by the estimated ÊN, it is no longer possible to linearly transform the basis
ÊN to a B basis constructed from a single reduced-order vector a. It is still possible,
however, to form linear combinations of the estimated eigenvectors.

b̂i =
K−1∑
j=0

êjCji , i = 0,1, . . . , K − 1 (6.7.3)

such that the resulting vectors b̂i will have vanishing first i and lastK−1−i coefficients;
that is, of the form

b̂i =
[
0, . . . , 0︸ ︷︷ ︸
i zeros

, 1, ai1, . . . , aiL, 0, . . . , 0︸ ︷︷ ︸
K−1−i zeros

]T
(6.7.4)
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This can be done by solving Eq. (6.7.2) with E replaced by its estimate, Ê, obtained
from R̂. The resultingK reduced-order vectors ai = [1, ai1, . . . , aiL]T, i = 0,1, . . . , K−1,
will not be the same necessarily. But, each can be considered to be an approximate
estimate of the true reduced-order vector a, and its L zeros will be estimates of the true
desired zeros.

It turns out that individually none of the ai is a particularly good estimate of a. They
may be combined, however, to produce a better estimate. This is analogous to MUSIC,
where individual spectra of noise eigenvectors are not good, but combining them by
averaging produces a better spectrum. To see how we may best combine the ai, we
form a new basis of the estimated noise subspace in terms of the vectors b̂i, namely,
B̂ = [b̂0, b̂1, . . . , b̂K−1]. For our 6×4 example, we have

B̂ = [b̂0, b̂1, b̂2, b̂3]=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
a01 1 0 0
a02 a11 1 0
0 a12 a21 1
0 0 a22 a31

0 0 0 a32

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
The linear transformations (6.7.3) may be written compactly as B̂ = ÊNC. Note that

B̂†B̂ is no longer Toeplitz and therefore, the LP solution f of (6.6.2) will not necessarily
have minimum phase. Thus, the empirical minimum-norm solution can have spurious
zeros outside or near the unit circle. Because the basis B̂ is an estimate of the true B,
we may try to fit B̂ to a matrix of the type B having the special structure (6.4.11) by
minimizing the distance between the two matrices according to some matrix norm. For
example, we may minimize the Frobenius matrix distance [102]:

‖B̂− B‖2 = tr
[
(B̂− B)†(B̂− B)] = K−1∑

i=0

‖b̂i − bi‖2 = min

Because b̂i and bi are the delayed versions of the reduced-order vectors ai and a , it
follows that ‖b̂i − b̂i‖2 = ‖ai − a‖2. Therefore,

‖B̂− B‖2 = tr
[
(B̂− B)†(B̂− B)] = K−1∑

i=0

‖ai − a‖2 = min (6.7.5)

Minimizing with respect to a gives the result:

â = 1

K

K−1∑
i=0

ai , Â(z)= 1

K

K−1∑
i=0

Ai(z) (6.7.6)

that is, the average of the K filters. Thus, we obtain the following reduced-order or,
reduced-MUSIC algorithm [75]:

1. Solve the eigenproblem for the estimated covariance matrix R̂.

2. Using the estimated noise subspace eigenvectors, solve (6.7.2) for the coefficients
Cji and using Eq. (6.7.3) obtain the basis vectors b̂i and hence the reduced-order
vectors ai, i = 0,1, . . . , K − 1.

3. Use the average (6.7.6) to get an estimate Â(z) of the reduced-order polynomial
A(z). Obtain estimates of the desired zeros by a root-finding procedure on Â(z),
or, by finding the peaks in the pseudospectrum

Ŝ(k)= 1

|Â(k)|2 =
1

|s†kâ|2
(6.7.7)
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The MATLAB function rmusic implements this algorithm. Figure 6.16 shows a com-
parison between the reduced-order algorithm and MUSIC for the same example consid-
ered in Fig. 6.15, where, again, for the purposes of comparison the vector â was normal-
ized to unit norm. As in the case of MUSIC, the spectrum of any individual reduced-order
vector ai is not good, but the spectrum based on the average â is better. This can be
appreciated by comparing the two zeros (L = 2) of the six (K = 6) individual filters
Âi(z), i = 0,1, . . . ,5 with the two zeros of the averaged polynomial Â(z) and with the
theoretical zeros. They are shown in the table below.

zeros Â0 Â1 Â2 Â3 Â4 Â5 Â A
|z1| 0.976 1.032 0.964 1.038 0.969 1.025 0.999 1.000
arg(z1)/π 0.197 0.203 0.199 0.199 0.203 0.197 0.201 0.200

|z2| 1.056 0.944 1.115 0.896 1.059 0.947 1.002 1.000
arg(z2)/π 0.393 0.407 0.402 0.402 0.407 0.393 0.399 0.400
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Fig. 6.16 MUSIC and reduced-order method.

An alternative method of combining the K estimates is as follows [99]. Form the
(L+ 1)×K matrix A = [a0, a1, . . . , aK−1] and note that if the ai were computed on the
basis of the theoretical covariance matrix R, then A would have rank one because each
ai would be exactly equal to a. But if the empirical matrix R̂ is used, then the matrix A
will only approximately have rank one, in the sense of its singular value decomposition
(SVD) [102]. Thus, we may replace A by its rank-one SVD approximant, namely, the
rank-one matrix closest to A with respect to the Frobenius or Euclidean matrix norms.
This amounts to finding the largest eigenvalue of the (L+ 1)×(L+ 1) matrix

AA† =
K−1∑
i=0

aia
†
i (6.7.8)

and choosing the corresponding eigenvector to be the estimate of a. This eigenvector is
expressible as a weighted sum of the ai but with different weights than Eq. (6.7.6). To see
this, let σ and â be the largest eigenvalue and eigenvector of AA†. Using AA†â = σâ,
and defining w = σ−1A†â, we find

â = Aw =
K−1∑
i=0

wiai (6.7.9)

where wi are the components of w = [w0,w1, . . . ,wK−1]T. The constraint that â and
ai, have first coefficients of unity implies the normalization condition

∑K−1
i=0 wi = 1.

Even though this method is computationally more complex than Eq. (6.7.6), it allows
one to judge the quality of the resulting estimate. This may be done by inspecting
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the relative magnitudes of the singular values of A, equivalently, the L+ 1 eigenvalues
of AA†. Theoretically, all but the maximum eigenvalue must be zero. Applying this
method to the above simulation example, we find the estimated zeros:

z1 = 0.9985ej0.2011π , z2 = 1.0037ej0.3990π

and the theoretical and empirical SVD values of the matrix A:

theoretical 5.8059 0 0
empirical 5.8139 0.1045 0.0187

6.8 Maximum Likelihood Method

The maximum likelihood method is not, strictly speaking, an eigenvector method; how-
ever, some of the ideas we have been discussing apply to it. The method determines the
plane wave frequencies and amplitudes by fitting them directly to the measured snap-
shot data using a criterion, such as maximum likelihood or least-squares [76–79]. Each
snapshot is modeled according to Eq. (6.3.10), which can be written compactly as

y(n)= [
s∗k1
, . . . , s∗kL

]⎡⎢⎢⎣
A1(n)

...
AL(n)

⎤⎥⎥⎦+ v(n)= S∗A(n)+v(n) (6.8.1)

The unknown amplitudes A(n) and wavenumbers ki, i = 1,2, . . . , L are treated as
deterministic parameters to be fitted to the snapshot data Y = {y(n), 0 ≤ n ≤ N − 1}.
The maximum likelihood estimates of these parameters are obtained by maximizing the
joint density of the snapshots, p(Y)= max. If the wave parameters are deterministic,
then the randomness in y(n) arises only from v(n). Assuming that v(n) are complex
gaussian (see Problem 6.16) and independent, the joint density of Y is the product of
marginal densities:

p(Y) =
N−1∏
n=0

p
(
v(n)

) = 1

(πσ2
v)N(M+1) exp

⎡⎣− 1

σ2
v

N−1∑
n=0

‖v(n)‖2

⎤⎦
= 1

(πσ2
v)N(M+1) exp

⎡⎣− 1

σ2
v

N−1∑
n=0

‖y(n)−S∗A(n)‖2

⎤⎦
Thus, under gaussian statistics, the maximum likelihood criterion is equivalent to

the least-squares minimization criterion:

J =
N−1∑
n=0

‖y(n)−S∗A(n)‖2 = min (6.8.2)

According to the general discussion of [101], the simultaneous minimization of J
with respect to ki and A(n) can be done in two steps. First, minimize with respect to
the amplitudes A(n) and then, minimize with respect to the wavenumbers ki. Setting
the gradients with respect to A(n) to zero, we obtain

∂J
∂A(n)

= −S†[y(n)∗−SA∗(n)
] = 0 ⇒ A(n)∗= (S†S)−1S†y(n)∗

Inserting this solution into Eq. (6.8.2), we obtain

J =
N−1∑
n=0

‖y(n∗)−SA(n)∗‖2 =
N−1∑
n=0

∥∥[I − S(S†S)−1S†]y(n)∗
∥∥2
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Using Eq. (6.4.13), we may rewrite it in terms of the projector onto the noise subspace,
namely, PN = B(B†B)−1B† = I − S(S†S)−1S†

J =
N−1∑
n=0

∥∥B(B†B)−1B†y(n)∗
∥∥2 =

N−1∑
n=0

∥∥PNy(n)∗
∥∥2

Using the projection property P†NPN = PN, and the definition (6.4.14) of the sample
covariance matrix, we find

J =
N−1∑
n=0

y(n)TPNy(n)∗= tr

⎡⎣N−1∑
n=0

PNy(n)Ty(n)∗
⎤⎦ = N tr[PNR̂]

The minimization of J with respect to the coefficients of the reduced-order vector a
is a highly nonlinear problem. It may be solved, however, iteratively by the solution of a
succession of simpler problems, by the following procedure [91,77–79,95,97]. Write
y(n)TB = [y(n)Tb0,y(n)Tb1, . . . ,y(n)TbK−1] and note that y(n)Tbi = aTyi(n),
where yi(n) is the (L + 1)-dimensional portion of y(n) starting at the ith position,
namely,

yi(n)=
[
yi(n), yi+1(n), . . . , yi+L(n)

]T , i = 0,1, . . . , K − 1

Then, y(n)TB = aT[y0(n),y1(n), . . . ,yK−1(n)]≡ aTY(n). And, J can be written as

J =
N−1∑
n=0

y(n)TB(B†B)−1B†y(n)∗= aT

⎡⎣N−1∑
n=0

Y(n)(B†B)−1Y(n)†
⎤⎦ a∗

The minimization of J is obtained by solving the succession of problems, for i = 1,2, . . . ,

Ji = aTi

⎡⎣N−1∑
n=0

Y(n)(B†i−1Bi−1)−1Y(n)†
⎤⎦ a∗i = min (6.8.3)

where B†i−1Bi−1 is constructed from the solution ai−1 of the previous iteration. The
iteration is initialized by a0 = [1,0, . . . ,0]T, which gives B†0B0 = IK. At each iteration,
Eq. (6.8.3) is subject to an appropriate constraint on ai such as that its first coefficient
be unity, or, that its zeros lie on the unit circle. Note that B†B is Toeplitz and therefore,
its inverse can be computed efficiently by the Levinson recursion.

6.9 ESPRIT Method

There exist a number of eigenvector methods that employ two or more sets of snap-
shot measurements obtained from two or more arrays related to each other either by
translation or by rotation. Examples are the estimation of signal parameters via rota-
tional invariance techniques (ESPRIT) method [80–82], the covariance difference method
[71–74], and the spatial smoothing method for dealing with coherent signals [55,62].

Consider two arrays related to each other by an overall translation by distance Δ
along the x-axis. The effect of translation shows up as an overall phase change in each
direction vector. For example, the value of a wave on the x-axis with respect to the
original and the translated x-axes will be:

A1e−jkxx → A1e−jkx(x+Δ) = A1e−jkxxe−jkxΔ

Setting xm = md and letting δ = Δ/d be the displacement in units of d, we obtain
at the original and translatedmth array elements

A1e−jk1m → A1e−jk1me−jk1δ
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or, in terms of the direction vectors

A1s∗1 → A1s∗1 e−jk1δ

It follows that the matrix S = [sk1 , . . . , skL] transforms under translation as

S → SDδ , Dd = diag
{
ejk1δ, ejk2δ, . . . , ejkLδ

}
(6.9.1)

Therefore, the snapshot measurements at the original and translated arrays are

y(n) = S∗A(n)+v(n)

yδ(n) = S∗D∗δA(n)+vδ(n)
(6.9.2)

The covariance and cross-covariance matrices are

Ryy = E[y(n)∗y(n)T]= SPS† +σ2
vI

Ryδyδ = E[yδ(n)∗yδ(n)T]= SDδPD†δS† +σ2
vI

(6.9.3)

Ryyδ = E[y(n)∗yδ(n)T]= SPD†δS† (6.9.4)

where we used E[vδ(n)∗vδ(n)T]= E[v(n)∗v(n)T]= σ2
vI and E[v(n)∗vδ(n)T]= 0.

The ESPRIT method works with the matrix pencil, C(λ)= C − λCδ, defined by the
pair of matrices

C = Ryy −σ2
vI = SPS† , Cδ = Ryyδ = SPD†δS† (6.9.5)

The generalized eigenvalues of this matrix pencil are, by definition [102], the so-
lutions of det(C − λCδ)= 0, and the corresponding generalized eigenvectors satisfy
Ce = λCδe. The ESPRIT method is based on the observation that the nonzero general-
ized eigenvalues of C(λ) are simply

λi = ejkiδ , i = 1,2, . . . , L (6.9.6)

and therefore, the desired wavenumbers ki can be extracted from the knowledge of the
λi. Note that λ = 0 is a generalized eigenvalue because det(C)= det(SPS†)= 0. This
follows from the fact that SPS† is an (M + 1)×(M + 1) matrix of rank L < M + 1.
The generalized eigenvectors corresponding to λ = 0 are the vectors in the null space
of SPS†; namely, they satisfy SPS†e = 0, or, equivalently, S†e = 0. These are the
noise subspace eigenvectors of Ryy. Next, we show that the only nonzero generalized
eigenvalues are those in Eq. (6.9.6). The corresponding generalized eigenvector e must
satisfy

SPS†e = λSPD†δS†e
Multiplying both sides by S† and removing the common matrix factor (S†S)P, we

obtain S†e = λD†δS†e. Using the fact that D†δ = D−1
δ , and defining the L-dimensional

vector f = S†e, we obtain
Dδf = λf

Clearly, if e is not in the noise subspace, then f = S†e 	= 0; therefore, λ must be an
eigenvalue ofDδ, which is already diagonal. This proves Eq. (6.9.6). The eigenvectors of
Dδ will be the L-dimensional unit vectors; that is, the columns of the L×L unit matrix,
fi = ui, i = 1,2, . . . , L. The generalized eigenvectors will be ei = S(S†S)−1ui. These
are obtained by an argument similar to Eq. (6.3.15). Thus, the L columns of the ma-
trix S(S†S)−1 are simply the generalized eigenvectors corresponding to the generalized
eigenvalues (6.9.6).
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In the practical implementation of the method, we assume we have two sets of snap-
shots, y(n) and yδ(n), for n = 0,1, . . . ,N− 1, measured at the original and translated
arrays. The covariance matrix Ryy is estimated by Eq. (6.4.14) and the cross-covariance
matrix by

Ĉδ = R̂yyδ =
1

N

N−1∑
n=0

y(n)∗yδ(n)T

From the eigenproblem of R̂yy, we obtain an estimate of σ̂2
v , either as the mini-

mum eigenvalue or, as the average of the eigenvalues of the noise subspace. Then, set
Ĉ = R̂yy − σ̂2

vI and solve the generalized eigenproblem for the pair {Ĉ, Ĉδ}. The L
generalized eigenvalues closest to the unit circle are used to extract estimates of the
desired wavenumbers ki by Eq. (6.9.6).

Unlike the minimum-norm and reduced-order methods that require equally spaced
linear arrays, the MUSIC and ESPRIT methods can be applied to arrays of arbitrary ge-
ometry.

6.10 Spatial Smoothing

Eigenvector methods rely on the property that the noise subspace eigenvectors have at
least L zeros on the unit circle at the desired frequency locations. As we saw in Section
6.3, this property requires that the L×L power matrix P have full rank equal to L. To
repeat the argument, the condition Ra = σ2

va implies that SPS†a = 0, but what we want
is S†a = 0. Multiplying by a†, we obtain (S†a)†P(S†a)= 0, but this does not necessarily
imply that S†a = 0 unless P has full rank.

The case of diagonal P corresponds to mutually uncorrelated sources for the L plane
waves. The case of a nondiagonal P of full rank implies that the sources are partially
correlated. The case of a non-diagonal P with less than full rank implies that some or
all of the sources are coherent with each other. This case commonly arises in multipath
situations, as shown in the following diagram

To see how eigenvector methods fail if P does not have full rank, consider the worst
case when all the sources are coherent, which means that the wave amplitudes Ai(n)
are all proportional to each other, say, Ai(n)= ciA1(n), i = 1,2, . . . , L, where the ci 	= 0
(with c1 = 1) are attenuation factors corresponding to the different paths. Compactly,
we may write A(n)= A1(n)c. Then, the power matrix becomes

P = E[
A(n)∗A(n)T

] = E[|A1(n)|2
]
c∗cT = P1c∗cT (6.10.1)

It has rank one. The corresponding covariance matrix is

R = SPS† +σ2
vI = P1Sc∗cTS† +σ2

vI = P1ss† +σ2
vI (6.10.2)

where s = Sc∗. Similarly,

y(n)= A1(n)S∗c+ v(n)= A1(n)s∗ + v(n)

Because R is a rank-one modification of the identity matrix, it will have a one-
dimensional signal subspace spanned by s and a noise subspace of dimension K =
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M + 1− 1 = M spanned by the eigenvectors belonging to the minimum eigenvalue σ2
v .

Thus, although we have L different signals, the solution of the eigenproblem will result
in a one-dimensional signal subspace. Moreover, the noise eigenvectors, will not neces-
sarily have zeros at the L desired locations. This can be seen as follows. If Ra = σ2

va,
then P1ss†a = 0, or, s†a = cTS†a = 0, which gives

cTS†a = [c1, . . . , cL]

⎡⎢⎢⎣
A(k1)

...
A(kL)

⎤⎥⎥⎦ = L∑
i=1

ciA(ki)= 0

This does not imply that the individual terms in the sum are zero. One solution to
this problem is the method of spatial smoothing [55,62], which restores P to full rank,
so that the eigenstructure methods can be applied as usual. The method is as follows.
The given array of M + 1 sensors is subdivided into J subarrays each having M̄ + 1
sensors. The first subarray consists of the first M̄+ 1 elements of the given array. Each
subsequent subarray is obtained by shifting ahead one array element at a time, as shown
in the following diagram

Formally, we define the J subarrays by

ȳi(n)= [yi(n), yi+1(n), . . . , yi+M̄(n)]T , i = 0,1, . . . , J − 1 (6.10.3)

where the bar indicates that the size of the subarray is M̄ + 1. That is the (M̄ + 1)-
dimensional portion of y(n) starting at the ith array element. Using Eq. (6.9.2), we may
write compactly

ȳi(n)= S̄∗D∗i A(n)+v̄i(n)

where S̄ is the same as S but of dimension M̄ + 1. The matrix Di is given by Eq. (6.9.1)
with δ = i, corresponding to translation by i units. The covariance matrix of the ith
subarray will be

R̄i = E[ȳi(n)∗ȳi(n)T]= S̄DiPD†i S̄† +σ2
vĪ

where Ī is the (M̄+1)-dimensional identity matrix. The average of the subarray covari-
ances is

R̄ = 1

J

J−1∑
i=0

R̄i = S̄P̄S̄† +σ2
vĪ (6.10.4)

where

P̄ = 1

J

J−1∑
i=0

DiPD
†
i (6.10.5)

To be able to resolve L sources by the (M̄ + 1)-dimensional eigenproblem (6.10.4),
we must have M̄ ≥ L, and the rank of P̄ must be L. It has been shown [62] that if the
number of subarrays J is greater than the number of signals, J ≥ L, then, P̄ has full
rank. If the J subarrays are to fit within the original array of lengthM+1, then we must
have M + 1 ≥ (M̄ + 1)+(J − 1), that is, the length of the first subarray plus the J − 1
subsequent shifts. Thus, M + 1 ≥ M̄ + J. If both J and M̄ are greater than L, then we
must haveM + 1 ≥ 2L. Therefore, the price for restoring the rank of P is that we must
use twice as long an array as in the ordinary full-rank case with L sources. A somewhat
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stronger result is that J ≥ L+1−ρ, where ρ is the rank of P [86]; equivalently, we have
J ≥ ν+1, where ν = L−ρ is the nullity of P. This would give for the minimum number
of array elementsM + 1 ≥ 2L+ 1− ρ [63,79,86].

Following [62], we derive the condition J ≥ L for the worst case, when all the signals
are coherent. In that case, P has rank one (ρ = 1) and is given by Eq. (6.10.1); P̄ becomes

P̄ = P1

J

J−1∑
i=0

Dic∗cTD†i =
P1

J

J−1∑
i=0

did
†
i , di = Dic∗

Writing
∑J−1
i=0 did

†
i = DD†, where D = [d0,d1, . . . ,dJ−1], it follows that the rank of

P̄ is the same as the rank of D. The matrix element Dli is the lth component of the ith
column; that is, Dli = (di)l= c∗l ejkli. Thus, D can be written as the product, D = C∗V,
of the diagonal matrix C∗ = diag{c∗1 , . . . , c∗L } and the L×J Vandermonde matrix V with
matrix elements Vli = ejkli; for example, if L = 3 and J = 4,

V =
⎡⎢⎣ 1 ejk1 e2jk1 e3jk1

1 ejk2 e2jk2 e3jk2

1 ejk3 e2jk3 e3jk3

⎤⎥⎦
The rank of Vandermonde matrices is always full; that is, it is the minimum of the col-

umn and row dimensions, min(L, J). It follows that the rank of P̄ is equal to min(L, J),
therefore, it is equal to L only if J ≥ L.

To appreciate the mechanism by which the rank is restored, let us consider an ex-
ample with two (L = 2) fully coherent sources. The minimum number of subarrays
needed to decohere the sources is J = L = 2. This implies M̄ =M+ 1− J =M− 1. The
covariance matrix of the full array is

R = P1[s1, s2]
[
c∗1
c∗2

]
[c1, c2]

[
s†1
s†2

]
+σ2

vI

The covariance matrices of the two subarrays are

R̄0 = P1[s̄1, s̄2]
[
c∗1
c∗2

]
[c1, c2]

[
s̄†1
s̄†2

]
+σ2

vĪ

R̄1 = P1[s̄1, s̄2]
[
ejk1c∗1
ejk2c∗2

]
[e−jk1c1, e−jk2c2]

[
s̄†1
s̄†2

]
+σ2

vĪ

Their average becomes

R̄ = 1

2
(R̄0 + R̄1)= [s̄1, s̄2]P̄

[
s̄†1
s̄†2

]
+σ2

vĪ

where

P̄ = P1

2

[
c∗1
c∗2

]
[c1, c2]+P1

2

[
ejk1c∗1
ejk2c∗2

]
[e−jk1c1, e−jk2c2]

= P1

[
c∗1 c1 c∗1 c2

(
1+ ej(k1−k2)

)
/2

c1c∗2
(
1+ ej(k2−k1)

)
/2 c∗2 c2

]
Clearly, P̄ is non-singular. The presence of the translation phases makes the two

column vectors [c∗1 , c∗2 ]T and [ejk1c∗1 , ejk2c∗2 ]T linearly independent. The determinant
of P̄ is easily found to be

det P̄ = |c1c2|2 sin2
(
k1 − k2

2

)
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Perhaps, an even simpler example is to consider the two quadratic forms

Q0 = (f1 + f2)2= fT
[

1
1

]
[1,1]f , f =

[
f1
f2

]

Q1 = f2
1 = fT

[
1
0

]
[1,0]f

Separately, they have rank one, but their sum has full rank

Q = Q0 +Q1 = (f1 + f2)2+f2
1 = 2f2

1 + 2f1f2 + f2
2 = fT

[
2 1
1 1

]
f

where the 2×2 coefficient matrix has rank two, being the sum of two rank-one matrices
defined by two linearly independent two-dimensional vectors[

2 1
1 1

]
=

[
1
1

]
[1,1]+

[
1
0

]
[1,0]

Such quadratic forms can be formed, for example, by a†SPS†a = f†Pf, where f = S†a.
In the practical implementation of the method, the subarray covariances are computed
by sample averages over N snapshots; that is,

R̄i = 1

N

N−1∑
n=0

ȳi(n)∗ȳi(n)T

and then forming the average

R̄ = 1

J

J−1∑
i=0

R̄i

In addition to spatial smoothing, there exist other methods for dealing with the
problem of coherent signal sources [83,84,87,88].

6.11 Asymptotic Properties

Statistically, the sample covariance matrix R̂ approximates the theoretical R, and there-
fore, the linear predictor based on R̂ will approximate the one based on R. Similarly, the
eigenstructure of R̂ will approximate that of R. In this section, we derive the asymptotic
statistical properties that justify such approximations [108–142].

The basic technique for deriving asymptotic results is to perform a linearization of
the empirical solution about the theoretical one and then use the asymptotic statistical
properties of R̂. In Section 1.5, we obtained the asymptotic covariance of R̂ for a large
number of snapshots N:

E[ΔRijΔRkl]= 1

N
(RikRjl +RilRjk) (6.11.1)

where ΔR = R̂−R is the deviation of R̂ from its mean. This was valid in the real-valued
case; the complex-valued version will be considered shortly. The normal equations of
linear prediction based on R̂ and R are

R̂â = Êu0 , â =
[

1
α̂αα

]
and Ra = Eu0 , a =

[
1
ααα

]

where Ê and E are the minimized values of the mean-square prediction errors given by
Ê = âTR̂â and E = aTRa. Setting â = a+Δa and Ê = E +ΔE, we obtain

(R+ΔR)(a+Δa)= (E +ΔE)u0 ⇒ R(Δa)+(ΔR)a = (ΔE)u0 (6.11.2)
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where we kept only the first-order terms. Because â and a have first coefficient of unity,
Δa = â− a will have zero first coefficient, that is, uT0 (Δa)= 0. Multiplying both sides of
Eq. (6.11.2) by aT, we obtain aTR(Δa)+aT(ΔR)a = ΔE. Using the normal equations for
a, we have aTR(Δa)= EuT0 (Δa)= 0. Thus, ΔE = aT(ΔR)a. Solving Eq. (6.11.2) for Δa
and using R−1u0 = E−1a, we find

Δa = E−1(ΔE)a−R−1(ΔR)a , ΔE = aT(ΔR)a (6.11.3)

For the purpose of computing the asymptotic covariances of Δa and ΔE, it proves
convenient to express Eq. (6.11.3) in terms of the vector δa ≡ (ΔR)a. Then,

Δa = E−1(ΔE)a−R−1(δa) , ΔE = aT(δa) (6.11.4)

Using Eq. (6.11.1), we find for the covariance of δa

E[δaiδak] = E
[∑
j
ΔRijaj

∑
l
ΔRklal

] =∑
jl
E[ΔRijΔRkl]ajal

= 1

N

∑
jl
(RikRjl +RjkRil)ajal = 1

N
[
Rik(aTRa)+(Ra)i(aTR)k

]
or,

E[δaδaT]= 1

N
[ER+Ra aTR] (6.11.5)

Writing ΔE = δaTa, we find

E[δaΔE]= E[δaδaT]a = 1

N
[ER+Ra aTR]a = 1

N
[
ERa+Ra(aTRa)

] = 2E
N
Ra

Using this result, we find for the asymptotic variance of Ê:

E
[
(ΔE)2] = aTE[δaΔE]= 2E

N
aTRa = 2E2

N
(6.11.6)

This generalizes Eq. (1.15.2). Similarly, we find for the cross-covariance between Ê
and â:

E[ΔaΔE]= E[
(E−1ΔEa−R−1δa)ΔE

] = E−1E
[
(ΔE)2]a−R−1E[δaΔE] , or,

E[ΔaΔE]= E−1 2E2

N
a−R−1(2E

N
Ra

) = 0 (6.11.7)

Finally, we find for the covariance of the predictor â

E[ΔaΔaT]= E[
Δa(E−1ΔEaT − δaR−1)

] = −E[ΔaδaT]R−1

= −E[
(E−1aΔE −R−1δa)δaT

]
R−1 = −[

E−1a
2E
N

aTR−R−1 1

N
(ER+Ra aTR)

]
R−1

= E
N
(R−1 − E−1a aT)= E

N

[
0 0T

0 R̃−1

]

where we used Eq. (5.9.16) or (1.7.35), and R̃ is the lower-order portion of R. Such result

was expected because Δa is of the form Δa =
[

0
Δααα

]
. Thus,

E[ΔαααΔαααT]= E
N
R̃−1 (6.11.8)



278 6. Spectrum Estimation

This is a well-known result, and although we obtained it for sample covariance ma-
trices of the type (1.5.21), where the snapshots y(n) were assumed to be independent,
it can be proved in the case of autoregressive models where R̂ is built out of the sample
autocorrelation function [108,118–121,125–128,133].

It can also be shown that asymptotically Ê and α̂αα are the maximum likelihood esti-
mates of the LP parameters E and ααα, having all the good properties of such estimates,
namely, asymptotic unbiasedness, consistency, efficiency, and gaussian distribution
about the theoretical values with covariances given by Eqs. (6.11.6)–(6.11.8), which are
none other than the Cramér-Rao bounds of these parameters. It is instructive to use the
general formula (1.17.17) to derive these bounds, where the parameter vector is defined
as λλλ = [E,αααT]T. We must determine the dependence of R on these parameters and
then compute the derivatives ∂R/∂E and ∂R/∂ααα. We write the UL factorization of R in
the form of Eq. (1.7.33):

R =
[
ρa rTa
ra R̃

]
= U−1DaU−T =

[
1 αααT

0 Ũ

]−1 [
E 0T

0 D̃

][
1 0T

ααα ŨT

]

The parametrization ofR on the parameters E andααα is shown explicitly. It is evident
that the entries ρa and ra depend on E andααα, whereas R̃ does not. We have

ra = −R̃ααα , ρa = E −αααTra = E +αααTR̃ααα

Working with differentials, we find dra = −R̃dααα and dρa = dE + 2αααTR̃dααα. Differ-
entiating R entry-by-entry and using Eq. (1.7.35) for R−1, we find

R−1dR = E−1

[
dE +αααTR̃dααα −dαααTR̃

(dE +αααTR̃dααα)ααα− Edααα −αααdαααTR̃
]

(6.11.9)

Writing a similar expression for a second differential R−1δR, multiplying the two,
and taking the trace, we find

tr(R−1dRR−1δR)= E−2dEδE + 2E−1dαααTR̃δααα (6.11.10)

This gives for the matrix elements of the Fisher information matrix

JEE = 1

2
N tr

[
R−1∂R

∂E
R−1∂R

∂E

]
= N

2E2

JαE = 1

2
N tr

[
R−1 ∂R

∂ααα
R−1∂R

∂E

]
= 0

Jαα = 1

2
N tr

[
R−1 ∂R

∂ααα
R−1 ∂R

∂αααT

]
= N
E
R̃

As we know, the inverse of the information matrix is the Cramér-Rao bound for
unbiased estimates. This inverse agrees with Eqs. (6.11.6)–(6.11.8).

Following the discussion of [123,129], we may also derive the asymptotic covariances
of the reflection coefficients. The forward and backward Levinson recursion establishes
a one-to-one correspondence between the prediction coefficients ααα and the vector of
reflection coefficientsγγγ. Therefore, we have the differential correspondenceΔγγγ = ΓΔααα,
where Γ is the matrix of partial derivatives Γij = ∂γi/∂αj. It follows that the asymptotic
covariance of γγγ will be

E[ΔγγγΔγγγT]= ΓE[ΔαααΔαααT]ΓT = E
N
ΓR̃−1ΓT (6.11.11)
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Example 6.11.1: For the first-order case, we have R̃ = [R(0)] and E1 = (1 − γ2
1)R(0), where

γ1 = −a11. Thus, we obtain Eq. (1.15.2) as a special case

E
[
(Δa11)2

] = E[
(Δγ1)2

] = 1− γ2
1

N

For the second-order case, Δααα = [Δa12, Δa22]T , and we have E2 = R(0)(1−γ2
1)(1−γ2

2)
and R̃ is the order-one autocorrelation matrix. Thus, we find

E[ΔαααΔαααT] = E2

N
R̃−1 = E2

N

[
R(0) R(1)
R(1) R(0)

]−1

= (1− γ
2
1)(1− γ2

2)
N(1− γ2

1)

[
1 −γ1

−γ1 1

]
= 1− γ2

2

N

[
1 −γ1

−γ1 1

]

From the Levinson recursion, we find for the second-order predictor a22 = −γ1(1 − γ2)
and a22 = −γ2. Differentiating, we have

dααα =
[
da12

da22

]
=

[
−(1− γ2) γ1

0 −1

][
dγ1

dγ2

]

Inverting, we find

dγγγ =
[
dγ1

dγ2

]
= 1

1− γ2

[
−1 −γ1

0 −(1− γ2)

]
dααα = Γdααα

Forming the product ΓR̃−1ΓT , we finally find

E[ΔγγγΔγγγT]= 1

N
1− γ2

2

(1− γ2)2

[
1− γ2

1 0
0 (1− γ2)2

]

which gives component-wise

E
[
(Δγ1)2

] = 1

N
(1+ γ2)(1− γ2

1)
1− γ2

, E[Δγ1Δγ2]= 0 , E
[
(Δγ2)2

] = 1− γ2
2

N

Setting γ2 = 0, the variance of γ1 becomes equal to that of the first-order case and
E
[
(Δγ2)2

] = 1/N. More generally, for an autoregressive process of orderM, all reflection
coefficients of order greater than M vanish, but their asymptotic variances are equal to
1/N, that is, E

[
(Δγp)2

] = 1/N, for p > M [123,129]. ��

Next, we consider the asymptotic properties of the eigenstructure of R̂ [134–142].
In the complex-valued case R̂ is given by Eq. (6.4.14), and Eq. (6.11.1) is replaced by

E[ΔRij ΔRkl]= 1

N
RilRkj (6.11.12)

where again ΔR = R̂ − R. This can be shown in the same way as Eq. (1.5.23) using the
following expression for the expectation value of the product of four complex gaussian
random variables arising from the (independent) snapshots y(n) and y(m):

E
[
yi(n)∗yj(n)yk(m)∗yl(m)

] = RijRkl + δnmRilRkj
Equation (6.11.12) may be written more conveniently in the form

E
[
(a†ΔRb)(c†ΔRd)

] = 1

N
(a†Rd)(c†Rb) (6.11.13)
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for any four (M+1)-dimensional vectors a,b, c,d. In particular, we may apply it to four
eigenvectors of R. Let ei denote the orthonormal eigenvectors of R, Rei = λiei, with
eigenvalues arranged in increasing order. Then,

E
[
(e†i ΔRej)(e

†
kΔRel)

] = 1

N
(e†i Rel)(e

†
kRej)= 1

N
λiλjδilδkj

where we used (e†i R)el = λie†i el = λiδil. Arranging the eigenvectors into the eigenvec-
tor matrix E = [e0, e1, . . . , eM], we recognize that the quantities eiΔRej, are the matrix
elements of ΔR in the E basis; that is, the elements of the matrix ΔV = E†ΔRE. Thus,
we obtain the diagonalized version of Eq. (6.11.12)

E[ΔVij ΔVkl]= 1

N
λiλjδilδkj (6.11.14)

The asymptotic properties of the eigenstructure of R̂ are obtained by using Eq. (6.11.14)
and standard first-order perturbation theory. The eigenproblems for R and R̂ are

RE = EΛ and R̂Ê = ÊΛ̂ (6.11.15)

where Ê, E are the eigenvector matrices and Λ̂,Λ the diagonal matrices of the eigenval-
ues. Because the eigenvectors E form a complete set, it follows that the eigenvectors
Ê can be expanded as linear combinations of the former; that is, Ê = EF. The or-
thonormality and completeness of Ê and E require that F be a unitary matrix, satisfying
F†F = FF† = I. This is easily shown; for example, I = Ê†Ê = F†E†EF = F†IF = F†F.

In carrying out the first-order perturbation analysis, we shall assume initially that
all the eigenvalues of R are distinct. This corresponds to the Pisarenko case, where the
noise subspace is one-dimensional and thus, L =M.

The assumption of distinct eigenvalues means that, under a perturbation, R̂ = R+
ΔR, each eigenvector changes by a small correction of the form Ê = E + ΔE. By the
completeness of the basis E we may write ΔE = EΔC so that Ê = E(I + ΔC)= EF.
The unitarity of the matrix F = I + ΔC requires that ΔC be anti-hermitian; that is,
ΔC+ΔC† = 0. This follows from the first-order approximation F†F = I +ΔC+ΔC†.
The perturbation changes the eigenvalues by λ̂i = λi + Δλi, or, Λ̂ = Λ + ΔΛ. To
determine the first-order corrections we use Eq. (6.11.15)

(R+ΔR)(E +ΔE)= (E +ΔE)(Λ+ΔΛ) ⇒ (ΔR)E +R(ΔE)= (ΔE)Λ+ E(ΔΛ)
where we kept only the first-order terms. Multiplying both sides by E† and using E†RE =
Λ and the definition ΔV = E†(ΔR)E, we obtain

ΔV +Λ(ΔC)= (ΔC)Λ+ΔΛ ⇒ ΔΛ+ (ΔC)Λ−Λ(ΔC)= ΔV
or, component-wise

Δλiδij + (λj − λi)ΔCij = ΔVij
Setting i = j and then i 	= j, we find

Δλi = ΔVii , ΔCij = − ΔVij
λi − λj , for i 	= j (6.11.16)

Using Eq. (6.11.14), we obtain the asymptotic variances of the eigenvalues

E
[
(Δλi)2] = E[ΔVii ΔVii]= λ2

i
N

(6.11.17)

For the eigenvectors, we write

Δei = êi − ei =
∑
j 	=i

ejΔCji
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and their covariances are

E[ΔeiΔe†i ]=
∑
j 	=i

∑
k	=i

eje
†
kE[ΔCjiΔC

∗
ki]

Using the anti-hermiticity of ΔC and Eq. (6.11.14), we find

E[ΔCjiΔC∗ki]= −
E[ΔVjiΔVik]

(λj − λi)(λi − λk) =
1

N
λiλj

(λi − λj)2
δjk

which gives

E[ΔeiΔe†i ]=
1

N

∑
j 	=i

λiλj
(λi − λj)2

eje
†
j (6.11.18)

Separating out the minimum eigenvalue λ0 and eigenvector e0, and denoting the
remaining signal subspace eigenvectors and eigenvalues by ES = [e1, . . . , eM] and ΛS =
diag{λ1, . . . , λM}, we may write Eq. (6.11.18) compactly

E[Δe0Δe†0]=
λ0

N
ESΛS(ΛS − λ0IM)−2E†S (6.11.19)

where IM is theM-dimensional unit matrix. The zeros of the polynomial e0 contain the
desired frequency information. The asymptotic variances for the zeros can be obtained
by writing

Δzi =
(
∂zi
∂e0

)T
Δe0

which gives

E
[|Δzi|2] = (

∂zi
∂e0

)T
E[Δe0Δe†0]

(
∂zi
∂e0

)∗
(6.11.20)

Example 6.11.2: In the L =M = 1 Example 6.3.1, we have for the eigenvalues and orthonormal
eigenvectors of R

λ0 = σ2
v , λ1 = σ2

v + 2P1 , e0 = 1√
2

[
1

−ejk1

]
, e1 = 1√

2

[
1
ejk1

]

It follows from Eq. (6.11.19) that

E[Δe0Δe†0]=
1

N
e1e†1

λ1λ0

(λ1 − λ0)2

Using the general formula for the sensitivities of zeros with respect to the coefficients of
a polynomial [25]

∂zi
∂am

= − 1

a0

zM−mi∏
j 	=i(zi − zj)

we find for the zero z1 = ejk1 of e0

∂z1

∂e0
= −√2

[
z1

1

]

Using this into Eq. (6.11.20), we find

E
[|Δzi|2] = 1

N
4λ1λ0

(λ1 − λ0)2
= 1

N
1+ 2SNR

SNR2 , SNR = P1

σ2
v

This implies that the quality of the estimated zero improves either by increasing the num-
ber of snapshots N or the signal to noise ratio. For low SNR, the denominator (λ1 − λ0)2

becomes small and the variance of z1 increases, resulting in degradation of performance.
For a given level of quality there is a tradeoff between the number of snapshots and SNR.
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In general, the signal subspace eigenvalues ΛS will be separated from λ0 = σ2
v by a term

that depends on the signal powers, say, ΛS = λ0IM + PS. Then,

λ0ΛS(ΛS − λ0IM)−2= (IM + PS/σ2
v)(PS/σ2

v)−2

and Eq. (6.11.19) implies that the estimate of e0 becomes better for higher SNRs. ��

When the noise subspace has dimension K =M+1−L and the minimum eigenvalue
λ0 hasK-fold degeneracy, the first-order perturbation analysis becomes somewhat more
complicated. The eigenproblem for R is divided into its noise and signal subspace parts

REN = λ0EN , RES = ESΛS
where EN consists of the K degenerate eigenvectors belonging to the minimum eigen-
value λ0 = σ2

v and ES consists of the remaining L signal subspace eigenvectors. Under
a perturbation R̂ = R + ΔR, the degeneracy of EN is lifted and the noise subspace
eigenvalues become unequal λ̂i = λ0 +Δλi, i = 0,1, . . . , K − 1, or, Λ̂N = λ0IK +ΔΛN.
Similarly, the signal subspace eigenvalues change to Λ̂S = ΛS +ΔΛS.

The signal subspace eigenvectors, belonging to distinct eigenvalues, change in the
usual way; namely, each eigenvector changes by receiving small contributions from all
other eigenvectors. The noise subspace eigenvectors, however, being degenerate, are
mixed up by the perturbation into linear combinations of themselves, and in addition,
they receive small corrections from the signal subspace eigenvectors. Thus, the eigen-
problem for the perturbed matrix R̂ is

R̂ÊN = ÊNΛ̂N , R̂ÊS = ÊSΛ̂S (6.11.21)

where the corrections of the eigenvectors are of the form

ÊN = ENC+ ESΔC , ÊS = ES + ESΔB+ ENΔD (6.11.22)

In absence of the perturbation ΔR, the choice of the degenerate basis EN is arbitrary
and can be replaced by any linear combination ENC. The presence of the perturbation
fixes this particular linear combination by the requirement that the change in the eigen-
vectors be small. Combining the two equations into the full eigenvector matrices, we
have

Ê = [ÊN, ÊS]= [EN, ES]
[
C ΔD
ΔC IL +ΔB

]
= EF

The orthonormality and completeness requirements for Ê imply that F†F = FF† = I.
To first order, these conditions are equivalent to

C†C = IK , ΔC+ΔD†C = 0 , ΔB+ΔB† = 0 (6.11.23)

Thus, C must be unitary. Inserting Eq. (6.11.22) into the first term of (6.11.21) and
using (6.11.23), we find

(R+ΔR)(ENC− ESΔD†C)= (ENC− ESΔD†C)(λ0IK +ΔΛN)

and equating first-order terms,

ΔRENC− ESΛSΔD†C = ENCΔΛN − ESΔD†Cλ0

Multiplying both sides first by E†N and then by E†S and using the orthonormality
properties (6.4.3), we obtain

ΔVNNC = CΔΛN (6.11.24)
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where ΔVNN = E†NΔREN, and

ΔVSNC−ΛSΔD†C = −ΔD†Cλ0

where ΔVSN = E†SΔREN, and solving for ΔD†

ΔD† = (ΛS − λ0IL)−1ΔVSN (6.11.25)

Similarly, from the second term of Eq. (6.11.21), we find for ΔB

ΔΛS +ΔBΛs −ΛsΔB = ΔVSS , ΔVSS = E†SΔRES (6.11.26)

which can be solved as in Eq. (6.11.16). To summarize, the corrections to the noise
subspace eigenvalues ΔΛN and the unitary matrix C are obtained from the solution of
the K×K eigenproblem (6.11.24), ΔD constructed by (6.11.25), then ΔC is constructed
by (6.11.23), and ΔB by (6.11.26).

Because the corrections to the signal subspace eigenvectors are obtained from the
non-degenerate part of the perturbation analysis, it follows that (6.11.18) is still valid
for the signal eigenvectors. More specifically, because we index the noise subspace
eigenvectors for 0 ≤ i ≤ K − 1 and the signal subspace eigenvectors for K ≤ i ≤M, we
may split the sum over the noise and signal subspace parts

E[ΔeiΔe†i ]=
1

N
λ0λi

(λ0 − λi)2

K−1∑
j=0

eje
†
j +

1

N

M∑
j 	=i
j=K

λiλj
(λi − λj)2

eje
†
j

where we used the fact that all noise subspace eigenvalues are equal to λ0. The first
term is recognized as the projector onto the noise subspace. Thus, for K ≤ i ≤M,

E[ΔeiΔe†i ]=
1

N
λ0λi

(λ0 − λi)2
ENE

†
N +

1

N

M∑
j 	=i
j=K

λiλj
(λi − λj)2

eje
†
j (6.11.27)

Because most eigenvector methods can also be formulated in terms of the signal
subspace eigenvectors, it is enough to consider only the asymptotic covariances of these
eigenvectors. For example, in the reduced-order method of Section 6.7, the reduced-
order polynomials ai may alternatively be computed by requiring that the corresponding
shifted vectors bi be orthogonal to the signal subspace [75]; namely, E†Sbi = 0, i =
0,1, . . . , K − 1, and similarly, for the empirical quantities Ê†S b̂i = 0. If we denote by Gi
the part of ES consisting of L+ 1 rows starting with the ith row, then, these conditions
become G†i ai = 0. Because the first coefficient of ai is unity, these give rise to L linear
equations for the L last coefficients ai. It follows that ai can be constructed as a function
of the signal eigenvectors, and thus, one can obtain the corresponding covariance of ai
using Eq. (6.11.27). An example will illustrate this remark.

Example 6.11.3: Consider the case of one plane wave (L = 1) and arbitraryM. The covariance
matrix R = σ2

vI + P1sk1 s†k1
has a one-dimensional signal subspace so that ES = [eM], Its

eigenvalue is λM = σ2
v + (M+1)P1. The matrix Gi is formed by row i to row i+L = i+1,

that is,

Gi =
[
eM,i
eM,i+1

]
= 1√

M + 1

[
ejk1i

ejk1(i+1)

]

The equation G†i ai = 0 becomes for the first-order filters ai,

G†i ai =
1√
M + 1

[
e−jk1i, e−jk1(i+1)][

1
ai1

]
= 0 ⇒ ai1 = −ejk1
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and hence, all the reduced-order polynomials are equal to the theoretical one, Ai(z)=
1 − ejk1z−1. Now, if the empirical êM is used , then a similar calculation gives ai1 =
−e∗M,i/e∗M,i+1, and therefore, the estimated zero will be ẑ1 = e∗M,i/e∗M,i+1. Differentiating,
we obtain dẑ1 = de∗M,i/e∗M,i+1 − e∗M,ide∗M,i+1/e

∗2
M,i+1; therefore, its covariance will be

E
[|Δz1|2

] = 1

|eM,i+1|2 E
[|ΔeM,i|2]+ |eM,i|2

|eM,i+1|4 E
[|ΔeM,i+1|2

]
− 2 Re

[
e∗M,i

eM,i+1e∗2
M,i+1

E
[
ΔeM,iΔe∗M,i+1

]]

This simplifies to

E
[|Δz1|2

] = (M + 1)
[
E
[|ΔeM,i|2]+ E[|ΔeM,i+1|2

]− 2 Re
(
ejk1E

[
ΔeM,iΔe∗M,i+1

])]

Because the signal subspace is one-dimensional, the second term in Eq. (6.11.27) is absent.
The noise-subspace projector can be expressed in terms of the signal-subspace projector
ENE

†
N = I − ESE†S . Thus, Eq. (6.11.27) gives

E[Δe0Δe†0]=
1

N
λMλ0

(λM − λ0)2

(
I − 1

M + 1
sk1 s†k1

)

Extracting the ith and (i+ 1)st components, we get for the variance of the estimated zero

E
[|Δz1|2

] = 1

N
2(M + 1)λMλ0

(λM − λ0)2
= 1

N
2
[
1+ (M + 1)SNR

]
(M + 1)SNR2

where SNR = P1/σ2
v . SettingM = 1, we recover the result of Example 6.11.2. ��

6.12 Problems

6.1 Computer Experiment. A fourth-order autoregressive process is defined by the difference
equation

yn + a1yn−1 + a2yn−2 + a3yn−3 + a4yn−4 = εn
where εn is zero-mean, unit-variance, white gaussian noise. The filter parameters {a1, a2,
a3, a4} are chosen such that the prediction error filter

A(z)= 1+ a1z−1 + a2z−2 + a3z−3 + a4z−4

has zeros at the locations

0.99 exp(±0.2πj) and 0.99 exp(±0.4πj)

(a) Determine {a1, a2, a3, a4}.
(b) Using a random number generator for εn, generate a realization of yn consisting of

50 samples. To avoid transient effects, be sure to let the filter run for a while. For
instance, discard the first 500 or 1000 outputs and keep the last 50.

(c) Compute the sample autocorrelation of yn based on the above block of data.

(d) Solve the normal equations by means of Levinson’s algorithm to determine the Yule-
Walker estimates of the model parameters {a1, a2, a3, a4;σ2

ε} and compare them with
the exact values.

(e) Compute the corresponding Yule-Walker spectrum and plot it together with the exact
autoregressive spectrum versus frequency. Be sure to allow for a sufficiently dense
grid of frequencies to be able to resolve the narrow peaks of this example. Plot all
spectra in decibels.
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(f) Using the same finite block of yn data, determine estimates of the model parameters
{a1, a2, a3, a4;σ2

ε} using Burg’s method, and compare them with the Yule-Walker es-
timates and with the exact values.

(g) Compute the corresponding Burg spectrum and plot it together with the exact spec-
trum versus frequency.

(h) Using the same block of yn data, compute the ordinary periodogram spectrum and
plot it together with the exact spectrum.

(i) Window the yn data with a Hamming window and then compute the corresponding
periodogram spectrum and plot it together with the exact spectrum.

(j) Repeat parts (b) through (i) using a longer realization of length 100.

(k) Repeat parts (b) through (i) using a length-200 realization of yn.

(l) Evaluate the various results of this experiment.

6.2 Show that the classical Bartlett spectrum of Eq. (6.2.6) can be written in the compact matrix
form of Eq. (6.2.7).

6.3 Show that in the limit of large M, the first sidelobe of the smearing function Wω) of
Eq. (6.2.10) is approximately 13 dB down from the main lobe.

6.4 Computer Experiment. (a) Reproduce the spectra shown in Figures 6.7 through 6.10.

(b) For the AR case, letM = 6, and take the SNRs of both sinusoids to be 6 dB, but change
the sinusoid frequencies to

ω1 = 0.5+Δω, ω2 = 0.5−Δω
where Δω is variable. Study the dependence of bias of the spectral peaks on the
frequency separation Δω by computing and plotting the spectra for various values of
Δω. (Normalize all spectra to 0 dB at the sinusoid frequencyω1).

6.5 Derive Equation (6.2.30).

6.6 Let

R = σ2
vI +

L∑
i=1

Pisωis
†
ωi

be the autocorrelation matrix of Eq. (6.2.8). Show that the inverse R−1 can be computed
recursively as follows:

R−1
k = R−1

k−1 −
R−1
k−1sωks

†
ωkR

−1
k−1

s†ωkR
−1
k−1sωk + P−1

k

for k = 1,2, . . . , L, initialized by R0 = σ2
vI.

6.7 Consider the case of one sinusoid (L = 1) in noise and arbitrary filter order M > 2, so that
the (M + 1)×(M + 1) autocorrelation matrix is

R = σ2
vI + P1sω1 s†ω1

(a) Show that the (L = 1)-dimensional signal subspace is spanned by the eigenvector

eM = sω1

and determine the corresponding eigenvalue.

(b) Show that theM+1−L =M dimensional noise subspace is spanned by theM linearly
independent eigenvectors, all belonging to the minimum eigenvalue σ2

v :

e0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
−ejω1

0
0
...
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, e1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1

−ejω1

0
0
...
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, e2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
1

−ejω1

0
0
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, . . . , eM−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
...
0
1

−ejω1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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(c) Show that the eigenpolynomialA(z) corresponding to an arbitrary linear combination
of theM noise eigenvectors

a = e0 + c1e1 + c2e2 + · · · + cM−1eM−1

can be factored in the form

A(z)= (1− ejω1z−1)(1+ c1z−1 + c2z−2 + · · · + cM−1z−(M−1))

exhibiting one zero at the desired sinusoid frequency ejω1 on the unit circle, andM−1
additional spurious zeros with arbitrary locations that depend on the particular choice
of the coefficients ci.

6.8 The constraint (6.2.31) can be incorporated into the performance index (6.2.32) by means of
a Lagrange multiplier

E = a†Ra+ λ(1− a†a)

Show that the minimization of E is equivalent to the Pisarenko eigenvalue problem of Eq.
6.2.29, with the multiplier λ playing the role of the eigenvalue. Show that the minimum of
E is the minimum eigenvalue.

6.9 Show Eq. (6.3.11).

6.10 Consider a singular (M+1)×(M+1) autocorrelation matrixR having non-singular principal
submatrices, and let a be the symmetric or antisymmetric order-M prediction filter satisfying
Ra = 0, as discussed in Section 5.5. First, argue that theM zeros of this filter lie on the unit
circle zi = ejωi , i = 1,2, . . . ,M. Then, consider the eigenvalue decomposition of this matrix
in the form R = EΛE†, where Λ is the diagonal matrix of the M nonzero eigenvalues of R
and E is the (M + 1)×M matrix whose columns are theM corresponding eigenvectors. Let
S = [sω1 , sω2 , . . . , sωM] be the matrix of phasing vectors defined by the zeros of a. Argue
that E is linearly related to S and that R can be written in the form R = SPS†, where P is an
M×M positive-definite matrix. Finally, show that the requirement that R be Toeplitz implies
that P must be diagonal, and therefore, R admits the sinusoidal representation

R =
M∑
i=1

Pisωis
†
ωi , with Pi > 0

6.11 Computer Experiment. To simulate Eq. (6.3.7), the amplitudes Ai(n) may be generated by

Ai(n)= Aiejφin

where φin are independent random phases distributed uniformly over the interval [0,2π],
and Ai are deterministic amplitudes related to the assumed signal to noise ratios (SNR) in
units of decibels by

SNRi = 10 log10

[
|Ai|2
σ2
v

]

(a) Consider one plane wave incident on an array of seven sensors from an angleθ1 = 30o.
The sensors are equally spaced at half-wavelength spacings; i.e., d = λ/2. For each of
the following values of the SNR of the wave

SNR = 0 dB, 10 dB, 20 dB

generate N = 1000 snapshots of Eq. (6.3.7) and compute the empirical spatial corre-
lation matrix across the array by

R̂ = 1

N

N−1∑
n=0

y(n)∗y(n)T

Compute and plot on the same graph the three spatial spectra: Bartlett, autoregressive
(AR), and maximum likelihood (ML), versus wavenumber k.
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(b) Repeat for two plane waves incident from angles θ1 = 25o and θ2 = 35o, and with
equal powers of 30 dB.

(c) Repeat part (b) for angles θ1 = 28o and θ2 = 32o.

(d) Repeat part (c) by gradually decreasing the (common) SNR of the two plane waves to
the values of 20 dB, 10 dB, and 0 dB.

(e) For parts (a) through (d), also plot all the theoretical spectra.

6.12 Consider L plane waves incident on a linear array ofM+1 sensors (L ≤M) in the presence
of spatially coherent noise. As discussed in Section 6.3, the corresponding covariance matrix
is given by

R = σ2
vQ +

L∑
i=1

Piskis
†
ki

where the waves are assumed to be mutually uncorrelated.

(a) Show that the generalized eigenvalue problem

Ra = λQa

has (1) an (M + 1 − L)-dimensional noise subspace spanned by M + 1 − L linearly
independent degenerate eigenvectors, all belonging to the eigenvalue λ = σ2

v , and (2)
an L-dimensional signal subspace with L eigenvalues greater than σ2

v .

(b) Show that any two eigenvectors a1 and a2 belonging to distinct eigenvalues λ1 and λ2

are orthogonal to each other with respect to the inner product defined by the matrix
Q, that is, show that a†1Qa2 = 0.

(c) Show that the L-dimensional signal subspace is spanned by the L vectors

Q−1ski , i = 1,2, . . . , L

(d) Show that any vector a in the noise subspace corresponds to a polynomial A(z) that
has L of itsM zeros on the unit circle at locations

zi = ejki , i = 1,2, . . . , L

The remainingM − L zeros can have arbitrary locations.

6.13 The previous problem suggests the following approach to the problem of “selectively nulling”
some of the sources and not nulling others. Suppose L1 of the sources are not to be nulled
and have known SNRs and directions of arrival, and L2 of the sources are to be nulled. The
total number of sources is then L = L1 + L2, and assuming incoherent background noise,
the incident field will have covariance matrix

R = σ2
vI +

L1∑
i=1

Piskis
†
ki +

L1+L2∑
i=L1+1

Piskis
†
ki

Define Q by

σ2
vQ = σ2

vI +
L1∑
i=1

Piskis
†
ki

so that we may write R as follows

R = σ2
vQ +

L1+L2∑
i=L1+1

Piskis
†
ki

Then, the nulling of the L2 sources at wavenumbers ki, i = L1+1, . . . , L1+L2, can be effected
by the (M + 1− L2)-dimensional noise subspace of the generalized eigenvalue problem

Ra = λQa

having minimum eigenvalue equal to σ2
v .
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(a) As an example, consider the caseM = 2, L1 = L2 = 1. Then,

R = σ2
vQ + P2sk2 s†k2

, σ2
vQ = σ2

vI + P1sk1 s†k1

Show that the (M + 1 − L2 = 2)-dimensional noise subspace is spanned by the two
eigenvectors

e1 =
⎡⎢⎣ 1
−ejk2

0

⎤⎥⎦ , e2 =
⎡⎢⎣ 0

1
−ejk2

⎤⎥⎦
(b) Show that an arbitrary linear combination

a = e1 + ρe2

corresponds to a filter A(z) having one zero at the desired location z2 = ejk2 , and a
spurious zero with arbitrary location.

(c) Show that the (L2 = 1)-dimensional signal subspace is spanned by the vector

e3 = Q−1sk2

and that the corresponding generalized eigenvalue is

λ = σ2
v + P2s†k2

Q−1sk2

(d) Verify the orthogonality properties e†i Qe3 = 0, i = 1,2, for the three eigenvectors
e1, e2, e3 defined in parts (a) and (c).

(e) As another example, consider the case M = 3 and L1 = L2 = 1. Show that the
(M + 1− L2 = 3)-dimensional noise subspace is spanned by the three eigenvectors

e1 =

⎡⎢⎢⎢⎣
1

−ejk2

0
0

⎤⎥⎥⎥⎦ , e2 =

⎡⎢⎢⎢⎣
0
1

−ejk2

0

⎤⎥⎥⎥⎦ , e3 =

⎡⎢⎢⎢⎣
0
0
1

−ejk2

⎤⎥⎥⎥⎦
and the signal eigenvector is e4 = Q−1sk2 . Generalize this part and part (a), to the case
of arbitraryM and L1 = L2 = 1.

(f) As a final example that corresponds to a unique noise eigenvector, consider the case
M = 2, L1 = 1, and L2 = 2, so that

R = σ2
vQ + P2sk2 s†k2

+ P3sk3 s†k3
, σ2

vQ = σ2
vI + P1sk1 s†k1

with k2 and k3 to be nulled. Show that the (M+1−L2 = 1)-dimensional noise subspace
is spanned by

a = e1 =
⎡⎢⎣ 1
−(ejk2 + ejk3)
ejk2ejk3

⎤⎥⎦
and that the corresponding polynomial A(z) factors into the two desired zeros

A(z)= (1− ejk2z−1)(1− ejk3z−1)

6.14 Computer Experiment. Consider a nine-element (M = 8) linear array with half-wavelength
spacing and two mutually uncorrelated incident plane waves with wavenumbers k1 = 0.3π,
k2 = 0.5π and equal powers of 20 dB. The background noise is incoherent with variance
σ2
v = 1.

(a) Construct the theoretical matrix R of Eq. (6.3.13) and solve its eigenproblem determin-
ing the nine eigenvectors and eigenvalues. Using a root finder (see e.g., [143]), compute
the eight zeros of each of the seven noise subspace eigenvectors and verify that the
desired zeros lie on the unit circle.
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(b) GenerateN = 100 snapshots, construct the sample covariance matrix R of Eq. (6.4.14),
solve its eigenproblem, use the AIC and MDL criteria to check the dimension of the
noise subspace, but regardless of these criteria take that dimension to be seven. Com-
pare the empirical eigenvalues with the theoretical ones found above. Compute the
zeros of the noise subspace eigenvectors and decide if the desired zeros are among
them and if any spurious ones lie close to the unit circle. Also, compute the zeros of
the Min-Norm vector d.

(c) On the same graph, plot in dB the pseudospectra of a few of the noise subspace eigen-
vectors, say, the first three. On a separate graph, but using the same vertical scales as
the previous one, plot the MUSIC and Min-Norm spectra.

(d) Using the same set of snapshots, repeat parts (b,c) for the symmetrized sample covari-
ance matrix of Eq. (6.4.15).

(e) For fixed SNR, repeat parts (b,c,d) for the following choices of number of snapshots:
N = 20, 50, 150, 200, 500.

(f) With the number of snapshots fixed atN = 100, repeat parts (a,b,c,d) for the following
values of the signal to noise ratio: SNR = −10, −5, 0, 5, 10, 30 dB.

(g) Repeat parts (a–f) for three 20-dB plane waves with k1 = 0.3π, k2 = 0.4π, k3 = 0.5π.

6.15 Show Eqs. (6.11.9) and (6.11.10).

6.16 Consider an M-dimensional complex random vector y with real and imaginary parts ξξξ and
ηηη, so that y = ξξξ + jηηη. With the complex vector y we associate a (2M)-dimensional real

random vector ȳ =
[
ξξξ
ηηη

]
. The corresponding covariance matrices are defined by

R = E[y∗yT] , R̄ = E[ȳȳT]

(a) Show that the conditions E[ξξξξξξT]= E[ηηηηηηT] and E[ξξξηηηT]= −E[ηηηξξξT] are equivalent to
the condition E[yyT]= 0, and that in this case the covariance matrices can be written
as follows:

R = 2(A+ jB) , R̄ =
[
A B
−B A

]
, A = E[ξξξξξξT] , B = E[ξξξηηηT]

The matrix A is symmetric and B antisymmetric. Show the equality of the quadratic
forms

yTR−1y∗ = 1

2
ȳTR̄−1ȳ

Also, show the relationship between the determinants detR = 2M(det R̄)1/2.
Hint: Apply a correlation canceling transformation on R̄ and use the matrix identity
A+ BA−1B = (A+ jB)A−1(A− jB).

(b) A complex gaussian random vector y is defined by the requirement that the corre-
sponding real vector ȳ be gaussian [112,144,145]. Equating the elemental probabili-
ties p(y)d2My = p(ȳ)d2Mȳ and using the results of part (a), show that if p(ȳ) is an
ordinary (zero-mean) gaussian with covariance R̄, then the density of y is

p(ȳ)= 1

(2π)M(det R̄)1/2 exp
(−1

2
ȳTR̄−1ȳ

) ⇒ p(y)= 1

πM detR
exp(−yTR−1y∗)

(c) Using this density show for any four components of y

E[y∗i yjy
∗
k yl]= RijRkl +RilRkj

(d) Use this result to prove Eq. (6.11.12)

6.17 Show that the log-likelihood function based on N independent complex gaussian snapshots
is given by (up to a constant)

lnp = −N tr
[
lnR+R−1R̂

]
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where R̂ is given byEq. (6.4.14). Note that it differs by a factor of two from the real-valued
case. From the discussion of Section 1.17, it follows that R̂ is the maximum likelihood
estimate of R. Moreover, the trace formula for the Fisher information matrix also differs by
a factor of two, namely,

Jij = N tr

[
R−1 ∂R

∂λi
R−1 ∂R

∂λj

]
6.18 Using Eq. (6.11.12), show that the covariances of the LP parameters E and a are in the

complex-valued case:

E
[
(ΔE)2

] = E2

N
, E

[
ΔaΔE

] = 0 , E
[
ΔaΔa†

] = E
N

(
R−1 − E−1a a†

)
6.19 Let S(k)= s†kRsk be the Bartlett spectrum. Using Eq. (6.11.13), show that its variance is

E
[(
ΔS(k)

)2] = 1

N
S(k)2

Show that the variance of the ML spectrum S(k)= 1/s†kR−1sk is also given by a similar
formula.

6.20 (a) Let A(k)= s†ka be the frequency response of the LP polynomial in the complex-valued
case. Using the results of Problem 6.18, show that its variance is

E
[|ΔA(k)|2] = E

N
[
s†kR

−1sk − E−1|A(k)|2]
Use the kernel representation of Problem 5.17 to argue that the right-hand side is positive.
Alternatively, show that it is positive by writing A(k)= E(s†kR−1u0) and E = (u†0R−1u0)−1,
and using the Schwarz inequality.

(b) In the complex case, show that E[ΔaΔaT]= 0. Then, show that the variance of the AR
spectrum S(k)= E/|A(k)|2 is given by

E
[(
ΔS(k)

)2] = 1

N
S(k)2

[
2S(k)(s†kR

−1sk)−1
]

and show again that the right-hand side is positive.
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7
Adaptive Filters

7.1 Adaptive Implementation of Wiener Filters

We review briefly the solution of the Wiener filtering problem.

The general solution does not place any a priori restriction on the order of the Wiener
filter. In general, an infinite number of weights is required to achieve the lowest esti-
mation error. However, in adaptive implementations we must insist in advance that the
number of filter weights be finite. This is so because the adaptation algorithm adapts
each weight individually. Obviously, we cannot adapt an infinite number of weights. We
will assume then, that the optimal Wiener filter is an FIR filter, say withM + 1 weights

h = [h0, h1, h2, . . . , hM]T , H(z)= h0 + h1z−1 + h2z−2 + · · · + hMz−M

This filter processes the available observations yn to produce the estimate

x̂n =
M∑
m=0

hmyn−m = h0yn + h1yn−1 + h2yn−2 + · · · + hMyn−M

The weights hm are chosen optimally so that the mean-square estimation error is
minimized; that is,

E = E[e2
n]= min , en = xn − x̂n

This minimization criterion leads to the orthogonality equations, which are the de-
termining equations for the optimal weights. Writing the estimate in vector notation

x̂n = [h0, h1, . . . , hM]

⎡⎢⎢⎢⎢⎢⎣
yn
yn−1

...
yn−M

⎤⎥⎥⎥⎥⎥⎦ = hTy(n)

we may write the orthogonality equations as

E[enyn−m]= 0 , 0 ≤m ≤M
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or, equivalently,
E[eny(n)]= 0

These give the normal equations

E[(xn − x̂n)y(n)]= E
[(
xn − hTy(n)

)
y(n)

] = 0 , or,

E[y(n)y(n)T]h = E[xny(n)] , or,

Rh = r , R = E[y(n)y(n)T] , r = E[xny(n)]

The optimal weights are obtained then by

h = R−1r (7.1.1)

The corresponding minimized value of the estimation error is computed by

E = E[e2
n]= E

[
en

(
xn − hTy(n)

)] = E[enxn]= E[(
xn − hTy(n)

)
xn

]
= E[x2

n]−hTE[y(n)xn]= E[x2
n]−hTr = E[x2

n]−rTR−1r

The normal equations, and especially the orthogonality equations, have their usual
correlation canceling interpretations. The signal xn being estimated can be written as

xn = en + x̂n = en + hTy(n)

It is composed of two parts, the term en which because of the orthogonality equations
is entirely uncorrelated with y(n), and the second term, which is correlated with y(n).
In effect, the filter removes from xn any part of it that is correlated with the secondary
input y(n); what is left, en, is uncorrelated with y(n). The Wiener filter acts as a
correlation canceler. If the primary signal xn and the secondary signal y(n) are in any
way correlated, the filter will cancel from the output en any such correlations.

One difficulty with the above solution is that the statistical quantities R and r must
be known, or at least estimated, in advance. This can be done either by block processing
or adaptive processing methods. The principal advantages of block processing meth-
ods are that the design is based on a single, fixed, data record and that the length of
the data record may be very short. Thus, such methods are most appropriate in appli-
cations where the availability of data is limited, as for example, in parametric spectrum
estimation based on a single block of data, or in deconvolution applications where the
data to be deconvolved are already available, for example, a still distorted picture or a
recorded segment of a seismic response.

Availability of data, however, is not the only consideration. In a changing environ-
ment, even if more data could be collected, it may not be correct to use them in the
design because stationarity may not be valid for the longer data block. Block processing
methods can still be used in such cases, but the optimum filters must be redesigned
every time the environment changes, so that the filter is always matched to the data
being processed by it. This is, for example, what is done in speech processing. The
input speech signal is divided into fairly short segments, with each segment assumed to
arise from a stationary process, then the statistical correlations are estimated by sample
correlations and the optimal prediction coefficients corresponding to each segment are
computed. In a sense, this procedure is data-adaptive, but more precisely, it is block-
by-block adaptive.

In other applications, however, we do not know how often to redesign and must
use adaptive implementations that provide an automatic way of redesigning the opti-
mum processors to continually track the environment. For example, communications
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and radar antennas are vulnerable to jamming through their sidelobes. Adaptive side-
lobe cancelers continuously adjust themselves to steer nulls toward the jammers even
when the jammers may be changing positions or new jammers may be coming into play.
Another example is the equalization of unknown or changing channels, or both. In
switched telephone lines the exact transmission channel is not known in advance but is
established at the moment the connection is made. Similarly, in fading communications
channels the channel is continuously changing. To undo the effects of the channel, such
as amplitude and phase distortions, an equalizer filter must be used at the receiving end
that effectively acts as an inverse to the channel. Adaptive equalizers determine auto-
matically the characteristics of the channel and provide the required inverse response.
Other applications, well-suited to adaptive implementations, are noise canceling, echo
canceling, linear prediction and spectrum estimation, and system identification and con-
trol.

In this chapter we discuss several adaptation algorithms, such as the Widrow-Hoff
least mean square (LMS) algorithm, the conventional recursive least squares (RLS) algo-
rithm, the fast RLS algorithms, and the adaptive lattice algorithms and present some
of their applications [1–9,155]. A typical adaptive implementation of a Wiener filter is
depicted in Fig. 7.1.

Fig. 7.1 Adaptive Wiener filter.

The adaptation algorithm continuously monitors the output error signal en and at-
tempts to minimize the output power E[e2

n], or, equivalently tries to decorrelate en
from the secondary input yn. At each time instant n, the current values of the weights
are used to perform the filtering operation. The computed output en is then used by the
adaptation part of the algorithm to change the weights in the direction of their optimum
values. As processing of the input signals xn and yn takes place and the filter gradually
learns the statistics of these inputs, its weights gradually converge to their optimum
values given by the Wiener solution (7.1.1). Clearly, the input statistics must remain un-
changed for at least as long as it takes the filter to learn it and converge to its optimum
configuration. If, after convergence, the input statistics should change, the filter will
respond by readjusting its weights to their new optimum values, and so on. In other
words, the adaptive filter will track the non-stationary changes of the input statistics as
long as such changes occur slowly enough for the filter to converge between changes.
The three basic issues in any adaptive implementation are:

1. The learning or convergence speed of the algorithm.
2. The computational complexity of the algorithm.
3. The numerical accuracy and stability of the algorithm.

The convergence speed is an important factor because it determines the maximum
rate of change of the input non-stationarities that can be usefully tracked by the filter.
The computational complexity refers to the number of operations required to update
the filter from one time instant to the next. The table below shows how various adaptive
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algorithms fare under these requirements.

algorithm speed complexity stability

LMS slow simple stable
RLS fast complex stable

Fast RLS fast simple unstable
Lattice fast simple stable

Only adaptive lattice algorithms satisfy all three requirements. We will discuss these
algorithms in detail later on. In the next section we begin with the LMS algorithm because
it is the simplest and most widely used. We finish this section with the obvious remark
that adaptive or block processing optimal filter designs, regardless of type, cannot do
any better than the theoretical Wiener solution. The optimal filter, therefore, should be
first analyzed theoretically to determine if it is worth using it in the application at hand.

7.2 Correlation Canceler Loop (CCL)

To illustrate the basic principles behind adaptive filters, consider the simplest possible
filter, that is, a filter with only one weight

The weight hmust be selected optimally so as to produce the best possible estimate
of xn :

x̂n = hyn
The estimation error is expressed as

E = E[e2
n]= E

[
(xn − hyn)2)

] = E[x2
n]−2hE[xnyn]+E[y2

n]h2

= E[x2
n]−2hr +Rh2

(7.2.1)

The minimization condition is

∂E
∂h
= 2E

[
en
∂en
∂h

]
= −2E[enyn]= −2r + 2Rh = 0 (7.2.2)

which gives the optimum solution hopt = R−1r, and also shows the correlation can-
cellation condition E[enyn]= 0. The adaptive implementation is based on solving the
equation

∂E
∂h
= 0 (7.2.3)

iteratively, using a gradient-descent method. The dependence of the error E on the filter
parameter h is parabolic, with an absolute minimum occurring at the above optimal
value hopt = R−1r. This is shown below
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In the adaptive version, the filter parameter h is made time-dependent, h(n), and is
updated from one time instant to the next as follows

h(n+ 1)= h(n)+Δh(n) (7.2.4)

where Δh(n) is a correction term that must be chosen properly in order to ensure that
eventually the time-varying weight h(n) will converge to the optimal value:

h(n)→ hopt = R−1r as n→∞
The filtering operation is now given by the still linear but time non-invariant form

x̂n = h(n)yn (7.2.5)

The computation of the estimate at the next time instant should be made with the
new weight, that is,

x̂n+1 = h(n+ 1)yn+1

and so on. The simplest way to choose the correction term Δh(n) is the gradient-
descent, or steepest-descent, method. The essence of the method is this: It is required
that the change h → h + Δh must move the performance index closer to its minimum
than before, that is, Δh must be such that

E(h+Δh)≤ E(h)
Therefore, if we always demand this, the repetition of the procedure will lead to

smaller and smaller values of E until the smallest value has been attained. Assuming
that Δh is sufficiently small, we may expand to first order and obtain the condition

E(h)+Δh ∂E(h)
∂h

≤ E(h)

If Δh is selected as the negative gradient −μ(∂E/∂h) then this inequality will be
guaranteed, that is, if we choose

Δh = −μ ∂E(h)
∂h

(7.2.6)

then the inequality is indeed satisfied:

E(h)+Δh ∂E(h)
∂h

= E(h)−μ
∣∣∣∣∂E(h)∂h

∣∣∣∣2

≤ E(h)

The adaptation parameter μ must be small enough to justify keeping only the first-
order terms in the above Taylor expansion. Applying this idea to our little adaptive
filter, we choose the correction Δh(n) according to Eq. (7.2.6), so that

h(n+ 1)= h(n)+Δh(n)= h(n)−μ ∂E
(
h(n)

)
∂h

(7.2.7)

Using the expression for the gradient
∂E(h)
∂h

= −2r + 2Rh, we find

h(n+ 1) = h(n)−μ[−2r + 2Rh(n)
]

= (1− 2μR)h(n)+2μr

This difference equation may be solved in closed form. For example, using z-transforms
with any initial conditions h(0), we find

h(n)= hopt + (1− 2μR)n(h(0)−hopt) (7.2.8)
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where hopt = R−1r. The coefficient h(n) will converge to its optimal value hopt, regard-
less of the starting value h(0), provided μ is selected such that

|1− 2μR| < 1

or, −1 < 1− 2μR < 1, or since μmust be positive (to be in the negative direction of the
gradient), μ must satisfy

0 < μ <
1

R
(7.2.9)

To select μ, one must have some a priori knowledge of the magnitude of the input
variance R = E[y2

n]. Such choice for μ will guarantee convergence, but the speed of
convergence is controlled by how close the number 1 − 2μR is to one. The closer it
is to unity, the slower the speed of convergence. As μ is selected closer to zero, the
closer 1−2μRmoves towards one, and thus the slower the convergence rate. Thus, the
adaptation parameter μ must be selected to be small enough to guarantee convergence
but not too small to cause a very slow convergence.

7.3 The Widrow-Hoff LMS Adaptation Algorithm

The purpose of the discussion in Section 7.2 was to show how the original Wiener filtering
problem could be recast in an iterative form. From the practical point of view, this
reformulation is still not computable since the adaptation of the weights requires a
priori knowledge of the correlations R and r. In the Widrow-Hoff algorithm the above
adaptation algorithm is replaced with one that is computable [1,2]. The gradient that
appears in Eq. (7.2.7)

h(n+ 1)= h(n)−μ ∂E
(
h(n)

)
∂h

is replaced by an instantaneous gradient by ignoring the expectation instructions, that
is, the theoretical gradient

∂E(
h(n)

)
∂h

= −2E[enyn]= −2r + 2Rh(n)= −2E[xnyn]+2E[y2
n]h(n)

is replaced by

∂E
∂h
= −2enyn = −2

(
xn − h(n)yn

)
yn = −2xnyn + 2y2

nh(n) (7.3.1)

so that the weight-adjustment algorithm becomes

h(n+ 1)= h(n)+2μenyn (7.3.2)

In summary, the required computations are done in the following order:

1. At time n, the filter weight h(n) is available.

2. Compute the filter output x̂n = h(n)yn.

3. Compute the estimation error en = xn − x̂n.

4. Compute the next filter weight h(n+ 1)= h(n)+2μenyn.

5. Go to next time instant n→ n+ 1.

The following remarks are in order:

1. The output error en is fed back and used to control the adaptation of the filter
weight h(n).
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2. The filter tries to decorrelate the secondary signal from the output en. This, is
easily seen as follows: If the weight h(n) has more or less reached its optimum
value, then h(n + 1)� h(n), and the adaptation equation implies also approxi-
mately that enyn � 0.

3. Actually, the weight h(n) never really reaches the theoretical limiting value hopt =
R−1r. Instead, it stabilizes about this value, and continuously fluctuates about it.

4. The approximation of ignoring the expectation instruction in the gradient is known
as the stochastic approximation. It complicates the mathematical aspects of the
problem considerably. Indeed, the difference equation

h(n+ 1)= h(n)+2μenyn = h(n)+2μ
(
xn − h(n)yn

)
yn

makes h(n) depend on the random variable yn in highly nonlinear fashion, and
it is very difficult to discuss even the average behavior of h(n).

5. In discussing the average behavior of the weight h(n), the following approxima-
tion is typically (almost invariably) made in the literature

E
[
h(n+ 1)

] = E[
h(n)

]+ 2μE
[
xnyn

]− 2μE
[
h(n)y2

n
]

= E[
h(n)

]+ 2μE
[
xnyn

]− 2μE
[
h(n)

]
E
[
y2
n
]

= E[
h(n)

]+ 2μr − 2μE
[
h(n)

]
R

where in the last term, the expectation E
[
h(n)

]
was factored out, as though h(n)

were independent of yn. With this approximation, the average E
[
h(n)

]
satisfies

the same difference equation as before with solution given by Eq. (7.2.8). Typically,
the weight h(n) will be fluctuating about the theoretical convergence curve as it
converges to the optimal value, as shown below

After convergence, the adaptive weight h(n) continuously fluctuates about the
Wiener solutionhopt. A measure of these fluctuations is the mean-square deviation

of h(n) from hopt, that is, E
[(
h(n)−hopt

)2]
. Under some restrictive conditions,

this quantity has been calculated [10] to be

E
[(
h(n)−hopt

)2]→ μEmin (for large n)

where Emin is the minimized value of the performance index (7.2.1). Thus, the
adaptation parameter μ controls the size of these fluctuations. This gives rise to
the basic trade-off of the LMS algorithm: to obtain high accuracy in the converged
weights (small fluctuations), a small value of μ is required, but this will slow down
the convergence rate.

A realization of the CCL is shown in Fig. 7.2. The filtering part of the realization must
be clearly distinguished from the feedback control loop that performs the adaptation of
the filter weight.
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Fig. 7.2 Correlation canceler loop.

Historically, the correlation canceler loop was introduced in adaptive antennas as a
sidelobe canceler [11–17]. The CCL is the simplest possible adaptive filter, and forms
the elementary building block of more complicated, higher-order adaptive filters.

We finish this section by presenting a simulation example of the CCL loop. The
primary signal xn was defined by

xn = −0.8yn + un
where the first term represents that part of xn which is correlated with yn. The part un
is not correlated with yn. The theoretical value of the CCL weight is found as follows:

r = E[xnyn]= −0.8E[ynyn]+E[unyn]= −0.8R+ 0 ⇒ hopt = R−1r = −0.8

The corresponding output of the CCL will be x̂n = hoptyn = −0.8yn, and therefore it
will completely cancel the first term of xn leaving at the output en = xn − x̂n = un.

In the simulation we generated 1000 samples of a zero-mean white-noise signal yn
of variance 0.1, and another independent set of 1000 samples of a zero-mean white-
noise signal un also of variance 0.1, and computed xn. The adaptation algorithm was
initialized, as is usually done, to zero initial weighth(0)= 0. Fig. 7.3 shows the transient
behavior of the adaptive weight h(n), as well as the theoretical weight E

[
h(n)

]
, as a

function of the number of iterations n, for the two values of μ, μ = 0.03 and μ = 0.01.

0 200 400 600 800 1000
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Transient behavior of CCL loop

μ = 0.01

μ = 0.03

Fig. 7.3 Transient behavior of theoretical (dashed) and adaptive weights h(n).

Note that in both cases, the adaptive weight converges to the theoretical value hopt =
−0.8, and that the smaller μ is slower but the fluctuations are also smaller. After the
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adaptive weight has reached its asymptotic value, the CCL begins to operate optimally,
removing the correlated part of xn from the output en.

Later on we will consider the complex-valued version of adaptive Wiener filters. Their
elementary building block is the complex CCL shown below

The performance index is now

E = E[|en|2] = E[|xn − hyn|2] = min

with optimum solution

hopt = R−1r , R = E[y∗nyn] , r = E[xny∗n ]
Analog implementations of the CCL are used in adaptive antennas. An analog CCL

is shown below

where a high gain amplifier G and an ordinary RC-type integrator are used. If τ denotes
the RC time constant of the integrator, the weight updating part of the CCL is

τḣ(t)+h(t)= Gu(t)= Ge(t)y∗(t)
The performance of the analog CCL can be analyzed by replacing the adaptive weight

h(t) by its statistical average, satisfying

τḣ(t)+h(t)= GE[
e(t)y∗(t)

] = GE[(
x(t)−h(t)y(t))y∗(t)]

or, defining R = E[
y(t)y∗(t)

]
and r = E[

x(t)y∗(t)
]
,

τḣ(t)+h(t)= Gr −GRh(t)
with solution for t ≥ 0:

h(t)= hopt + (h(0)−hopt)e−at

where hopt is the asymptotic value

hopt = (1+GR)−1Gr
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Thus, a high gainG is needed to produce an asymptotic value close to the theoretical
Wiener solution R−1r. The time constant of adaptation is given by

1

a
= τ

1+GR
Note that this particular implementation always converges and the speed of conver-

gence is still inversely dependent on R.

7.4 Adaptive Linear Combiner

A straightforward generalization of the correlation canceler loop is the adaptive linear
combiner, where one has available a main signal xn and a number of secondary signals
ym(n), m = 0,1, . . . ,M. These (M + 1) secondary signals are to be linearly combined
with appropriate weights h0, h1, . . . , hM to form an estimate of xn:

x̂n = h0y0(n)+h1y1(n)+· · · + hMyM(n)= [h0, h1, . . . , hM]

⎡⎢⎢⎢⎢⎢⎣
y0(n)
y1(n)

...
yM(n)

⎤⎥⎥⎥⎥⎥⎦ = hTy(n)

A realization of this is shown in Fig. 7.4. The adaptive linear combiner is used in
adaptive radar and sonar arrays [11–17]. It also encompasses the case of the ordinary
FIR, or transversal, Wiener filter [2].

Fig. 7.4 Linear combiner.

The optimal weights hm minimize the estimation error squared

E = E[e2
n]= min , en = xn − x̂n

The corresponding orthogonality equations state that the estimation error be or-
thogonal (decorrelated) to each secondary signal ym(n):

∂E
∂hm

= 2E
[
en
∂en
∂hm

]
= −2E

[
enym(n)

] = 0 , 0 ≤m ≤M

or, in vector form

E
[
eny(n)

] = 0 ⇒ E
[
xny(n)

]− E[
y(n)yT(n)

]
h = r−Rh = 0

with optimum solution hopt = R−1r.
The adaptive implementation is easily obtained by allowing the weights to become

time-dependent, h(n), and updating them in time according to the gradient-descent
algorithm

h(n+ 1)= h(n)−μ ∂E
(
h(n)

)
∂h
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with instantaneous gradient

∂E
∂h
= −2E

[
eny(n)

]→ −2eny(n)

so that
h(n+ 1)= h(n)+2μeny(n)

or, component-wise

hm(n+ 1)= hm(n)+2μenym(n) , 0 ≤m ≤M (7.4.1)

The computational algorithm is summarized below:

1. x̂n = h0(n)y0(n)+h1(n)y1(n)+· · · + hM(n)yM(n)
2. en = xn − x̂n
3. hm(n+ 1)= hm(n)+2μenym(n) , 0 ≤m ≤M
It is evident that each weight hm(n) is being adapted by its own correlation canceler

loop, while all weights use the same feedback error en to control their loops. The case
of two weights (M = 1) is shown in Fig. 7.5.

Fig. 7.5 Adaptive linear combiner.

The adaptive linear combiner has two major applications:

1. Adaptive sidelobe canceler.

2. Adaptive FIR Wiener filter.

The two cases differ only in the way the inputs to the linear combiner are supplied. The
linear combiner part, performing the optimum processing, is the same in both cases.
The time series case is discussed in the next section. The array problem is depicted
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below.

It consists of a main and a number of secondary antennas. The main antenna is highly
directional and oriented toward the desired signal. Jammers picked up by the sidelobes
of the main antenna and by the secondary antennas will tend to be canceled because the
adaptive linear combiner, acting as a correlation canceler, will adjust itself to cancel that
part of the main signal that is correlated with the secondary ones. The desired signal
may also be canceled partially if it is picked up by the secondary antennas. Strong
jammers, however, will generally dominate and as a result the canceler will configure
itself to cancel them. The cancellation of the desired signal can also be prevented by
imposing additional constraints on the filter weights that can sustain the beam in the
desired look-direction.

The adaptation speed of the adaptive canceler is affected by the relative power levels
of the jammers. If there are jammers with greatly differing powers, the overall adapta-
tion speed may be slow. The stronger jammers tend to be canceled faster; the weaker
ones more slowly. Qualitatively this may be understood by inspecting, for example, ex-
pression (6.2.32). The power levels Pi of the plane waves act as penalty factors in the
performance index, that is, the minimization of the performance index will tend to favor
first the largest terms in the sum. This limitation of the LMS algorithm has led to the
development of alternative algorithms, such as adaptive Gram-Schmidt preprocessors
or RLS, in which all jammers get canceled equally fast.

7.5 Adaptive FIR Wiener Filter

The adaptive FIR or transversal filter is a special case of the adaptive linear combiner.
In this case, there is only one secondary signal yn. The required M + 1 signals ym(n)
are provided as delayed replicas of yn, that is,

ym(n)= yn−m (7.5.1)

A realization is shown in Fig. 7.6. The estimate of xn is

x̂n =
M∑
m=0

hm(n)yn−m = h0(n)yn + h1(n)yn−1 + · · · + hM(n)yn−M

The time-varying filter weights hm(n) are continuously updated according to the
gradient-descent LMS algorithm

hm(n+ 1)= hm(n)+2μenym(n) , or,

hm(n+ 1)= hm(n)+2μenyn−m , 0 ≤m ≤M (7.5.2)

Each weight is therefore updated by its own CCL. Again, we summarize the compu-
tational steps:
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Fig. 7.6 Adaptive FIR Wiener filter.

1. Compute the estimate x̂n =
M∑
m=0

hm(n)yn−m

2. Compute the error signal en = xn − x̂n
3. Adjust the weights hm(n+ 1)= hm(n)+2μenyn−m , 0 ≤m ≤M
The subroutine lms (see Appendix B) is an implementation of the algorithm. With a

minor modification it can also be used for the more general adaptive linear combiner.
Each call to the routine reads a pair of input samples {xn, yn}, performs the filtering
operation to produce the output pair {x̂n, en}, updates the filter coefficients hm(n) to
their new values hm(n+1) to be used by the next call, and updates the internal state of
the filter. It is essentially the routine dwf with the weight adaptation part added to it.

Next, we present the same simulation example as that given in Section 7.3, but it is
now approached with a two-tap adaptive filter (M = 1). The filtering equation is in this
case

x̂n = h0(n)yn + h1(n)yn−1

The theoretical Wiener solution is found as follows: First note that

Rxy(k) = E[xn+kyn]= E
[
(−0.8yn+k + un+k)yn

] = −0.8E[yn+kyn]

= −0.8Ryy(k)= −0.8R(k)

Thus, the cross correlation vector is

r =
[
Rxy(0)
Rxy(1)

]
= −0.8

[
R(0)
R(1)

]

and the Wiener solution becomes:

h = R−1r =
[
R(0) R(1)
R(1) R(0)

]−1 [
−0.8R(0)
−0.8R(1)

]

= −0.8
R(0)2−R(1)2

[
R(0) −R(1)
−R(1) R(0)

][
R(0)
R(1)

]
=

[
−0.8

0

]

We could have expected that h1 is zero, since the signal xn does not depend on yn−1,
but only on yn. The adaptive weights were both initialized to the (arbitrary) value of
h0(0)= h1(0)= −0.4, and the value of μ was 0.03. Figure 7.7 shows the two adaptive
weights h0(n) and h1(n) as a function of n, converging to their optimal values of
h0 = −0.8 and h1 = 0.
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Fig. 7.7 Transient behavior of FIR adaptive filter.

How does one select the filter orderM? The rule is that the filter must have at least
as many delays as that part of xn which is correlated with yn. To see this, suppose xn
is related to yn by

xn = c0yn + c1yn−1 + · · · + cLyn−L + un (7.5.3)

where un is uncorrelated with yn. Then, the filter order must be at least L. IfM ≥ L, we
can write:

xn = c0yn + c1yn−1 + · · · + cMyn−M + un = cTy(n)+un
where c is the extended vector having ci = 0 for L + 1 ≤ i ≤ M. The cross-correlation
between xn and y(n) is

r = E[
xny(n)

] = E[(
yT(n)c)y(n)

] = E[
y(n)yT(n)

]
c = Rc

Thus, the Wiener solution will be h = R−1r = c. This, in turn, implies the complete
cancellation of the y-dependent part of xn. Indeed, x̂n = hTy(n)= cTy(n) and

en = xn − x̂n =
(
cTy(n)+un

)− cTy(n)= un
What happens if we underestimate the filter order and choose M < L? In this case,

we expect to cancel completely the firstM terms of Eq. (7.5.3) and to cancel the remaining
terms as much as possible. To see this, we separate out the firstM terms writing

xn = [c0, . . . , cM]

⎡⎢⎢⎣
yn
...

yn−M

⎤⎥⎥⎦+ [cM+1, . . . , cL]

⎡⎢⎢⎣
yn−M−1

...
yn−L

⎤⎥⎥⎦+ un ≡ cT1 y1(n)+cT2 y2(n)+un

The problem of estimating xn using anMth order filter is equivalent to the problem
of estimating xn from y1(n). The cross-correlation between xn and y1(n) is

E
[
xny1(n)

] = E[
y1(n)yT1 (n)

]
c1 + E

[
y1(n)yT2 (n)

]
c2

It follows that the optimum estimate of xn is

x̂n = E
[
xnyT1 (n)

]
E
[
y1(n)yT1 (n)

]−1
y1(n)

= (
cT1E

[
y1(n)yT1 (n)

]+ cT2E
[
y2(n)yT1 (n)

])
E
[
y1(n)yT1 (n)

]−1
y1(n)

= (
cT1 + cT2E

[
y2(n)yT1 (n)

]
E
[
y1(n)yT1 (n)

]−1)
y1(n)

= cT1 y1(n)+cT2 ŷ2/1(n)
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where ŷ2/1(n)= E
[
y2(n)yT1 (n)

]
E
[
y1(n)yT1 (n)

]−1
y1(n) is recognized as the optimum

estimate of y2(n) based on y1(n). Thus, the estimation error will be

en = xn − x̂n =
[
cT1 y1(n)+cT2 y2(n)+un

]− [
c1y1(n)+cT2 ŷ2/1(n)

]
= cT2

[
y2(n)−ŷ2/1(n)

]+ un
which shows that the y1(n) part is removed completely, and the y2(n) part is removed
as much as possible.

7.6 Speed of Convergence

The convergence properties of the LMS algorithm [2,10,18] may be discussed by restoring
the expectation values where they should be, that is

∂E
∂h
= −2E

[
eny(n)

]
, y(n)=

⎡⎢⎢⎢⎢⎢⎣
y0(n)
y1(n)

...
yM(n)

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣
yn
yn−1

...
yn−M

⎤⎥⎥⎥⎥⎥⎦
resulting in the difference equation for the weight vector

h(n+ 1) = h(n)−μ ∂E
∂h

= h(n)+2μE
[
eny(n)

]
= h(n)+2μ

{
E
[
xny(n)

]− E[
y(n)yT(n)

]
h(n)

}
= h(n)+2μr− 2μRh(n)

or,
h(n+ 1)= (I − 2μR)h(n)+2μr (7.6.1)

where r = E[
xny(n)

]
and R = E[

y(n)yT(n)
]
. The difference equation (7.6.1) has the

following solution, where hopt = R−1r

h(n)= hopt + (I − 2μR)n(h(0)−hopt)

Convergence to hopt requires that the quantity (1− 2μλ), for every eigenvalue λ of
R, have magnitude less than one (we assume that R has full rank and therefore all its
eigenvalues are positive):

|1− 2μλ| < 1 � −1 < 1− 2μλ < 1 � 0 < μ <
1

λ

This condition will be guaranteed if we require this inequality for λmax, the maximum
eigenvalue:

0 < μ <
1

λmax
(7.6.2)

Note that λmax can be bounded from above by

λmax < tr(R)=
M∑
i=0

Rii =
M∑
i=0

R(0)= (M + 1)R(0)

and one may require instead μ < 1/
(
(M + 1)R(0)

)
. As for the speed of convergence,

suppose that μ is selected half-way within its range (7.6.2), near 0.5/λmax, then the rate
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of convergence will depend on the slowest converging term of the form (1 − 2μλ)n

that is, the term having |1 − 2μλ| as close to one as possible. This occurs for the
smallest eigenvalue λ = λmin. Thus, the slowest converging term is effectively given by
(1 − 2μλmin)n= (1 − λmin/λmax)n. The effective time constant in seconds is obtained
by writing t = nT, where T is the sampling period, and using the approximation(

1− λmin

λmax

)n
� exp

(
−λmin

λmax
n
)
= e−t/τ

where

τ = T λmax

λmin

The eigenvalue spread λmax/λmin controls, therefore, the speed of convergence. The
convergence can be as fast as one sampling instant T if the eigenvalue spread is small,
i.e., λmax/λmin � 1. But, the convergence will be slow if the eigenvalue spread is large.
As we shall see shortly, a large spread in the eigenvalues of the covariance matrix R
corresponds to a highly self-correlated signal yn.

Thus, we obtain the general qualitative result that in situations where the secondary
signal is strongly self-correlated, the convergence of the gradient-based LMS algorithm
will be slow. In many applications, such as channel equalization, the convergence must
be as quick as possible. Alternative adaptation schemes exist that combine the compu-
tational simplicity of the LMS algorithm with a fast speed of convergence. Examples are
the fast RLS and the adaptive lattice algorithms.

The possibility of accelerating the convergence rate may be seen by considering a
more general version of the gradient-descent algorithm in which the time update for the
weight vector is chosen as

Δh = −M ∂E
∂h

(7.6.3)

where M is a positive definite and symmetric matrix. The LMS steepest descent case is
obtained as a special case of this whenM is proportional to the unit matrix I,M= μI.
This choice guarantees convergence towards the minimum of the performance index
E(h), indeed,

E(h+Δh)� E(h)+ΔhT
(
∂E
∂h

)
= E(h)−

(
∂E
∂h

)T
M

(
∂E
∂h

)
≤ E(h)

Since the performance index is

E = E[e2
n]= E

[(
xn − hTy(n)

)2] = E[x2
n]−2hTr+ hTRh

it follows that ∂E/∂h = −2(r−Rh), and the difference equation for the adaptive weights
becomes

h(n+ 1)= h(n)+Δh(n)= h(n)+2M(
r−Rh(n)

)
or,

h(n+ 1)= (I − 2MR)h(n)+2Mr (7.6.4)

with solution for n ≥ 0

h(n)= hopt + (I − 2MR)n(h(0)−hopt) (7.6.5)

where hopt = R−1r is the asymptotic value, and h(0), the initial value. It is evident
from Eq. (7.6.4) or Eq. (7.6.5) that the choice of M can drastically affect the speed of
convergence. For example, ifM is chosen as

M= (2R)−1 (7.6.6)
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then I − 2MR = 0, and the convergence occurs in just one step! This choice of M is
equivalent to Newton’s method of solving the system of equations

f(h)= ∂E
∂h
= 0

for the optimal weights. Indeed, Newton’s method linearizes about each point h to get
the next point, that is, Δh is selected such that

f(h+Δh)� f(h)+
(
∂f

∂h

)
Δh = 0

where we expanded to first order in Δh. Solving for Δh, we obtain

Δh = −
(
∂f

∂h

)−1

f(h)

But since f(h)= −2(r − Rh), we have ∂f/∂h = 2R. Therefore, the choice M =
(2R)−1 corresponds precisely to Newton’s update. Newton’s method is depicted below
for the one-dimensional case.

Note that the property that Newton’s method converges in one step is a well-known
property valid for quadratic performance indices (in such cases, the gradient f(h) is
already linear in h and therefore Newton’s local linearization is exact). The important
property about the choice M = (2R)−1 is that M is proportional to the inverse of
R. An alternative choice could have been M = αR−1. In this case I − 2MR becomes
proportional to the identity matrix:

I − 2MR = (1− 2α)I

having equal eigenvalues. Stability requires that |1−2α| < 1, or equivalently, 0 < α < 1,
with Newton’s choice corresponding exactly to the middle of this interval, α = 1/2.
Therefore, the disparity between the eigenvalues that could slow down the convergence
rate is eliminated, and all eigenmodes converge at the same rate (which is faster the
moreM resembles (2R)−1).

The implementation of such Newton-like methods requires knowledge of R, which
we do not have (if we did, we would simply compute the Wiener solution hopt = R−1r.)
However, as we shall see later, the so-called recursive least-squares algorithms effec-
tively provide an implementation of Newton-type methods, and that is the reason for
their extremely fast convergence. Adaptive lattice filters also have very fast convergence
properties. In that case, because of the orthogonalization of the successive lattice stages
of the filter, the matrix R is diagonal (in the decorrelated basis) and the matrix M can
also be chosen to be diagonal so as to equalize and speed up the convergence rate of all
the filter coefficients. Recursive least-squares and adaptive lattice filters are discussed
in Sections 7.13 and 7.18, respectively.

Finally, we would like to demonstrate the previous statement that a strongly corre-
lated signal yn has a large spread in the eigenvalue spectrum of its covariance matrix.
For simplicity, consider the 2×2 case

R = E[
y(n)yT(n)

] = E[[
yn
yn−1

][
yn, yn−1

]] = [
R(0) R(1)
R(1) R(0)

]
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The two eigenvalues are easily found to be

λmin = R(0)−|R(1)|
λmax = R(0)+|R(1)|

and therefore, the ratio λmin/λmax is given by

λmin

λmax
= R(0)−|R(1)|
R(0)+|R(1)|

Since for an autocorrelation function we always have |R(1)| ≤ R(0), it follows that
the largest value of R(1) is ±R(0), implying that for highly correlated signals the ratio
λmin/λmax will be very close to zero.

7.7 Adaptive Channel Equalizers

Channels used in digital data transmissions can be modeled very often by linear time-
invariant systems. The standard model for such a channel including channel noise is
shown here.

In the Figure,Hc(z) is the transfer function for the channel and vn, the channel noise,
assumed to be additive white gaussian noise. The transfer functionHc(z) incorporates
the effects of the modulator and demodulator filters, as well as the channel distortions.
The purpose of a channel equalizer is to undo the distorting effects of the channel and
recover, from the received waveform yn, the signal xn that was transmitted. Typically,
a channel equalizer will be an FIR filter with enough taps to approximate the inverse
transfer function of the channel. A basic equalizer system is shown below.

In this figure, H(z) is the desired transfer function of the equalizer. In many situ-
ations, such in the telephone network, the channel is not known in advance, or it may
be time-varying as in the case of multipath channels. Therefore, it is desirable to design
equalizers adaptively [19–21].

A channel equalizer, adaptive or not, is an optimal filter since it tries to produce
as good an estimate x̂n of the transmitted signal xn as possible. The Wiener filtering
concepts that we developed thus far are ideally suited to this problem. This is shown
below.
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The design of the optimal filter requires two things: first, the autocorrelation of the
received signal yn, and second, the cross-correlation of the transmitted signal xn with
the received signal. Since the transmitted signal is not available at the receiver, the
following procedure is used. After the channel connection is established, a “training”
sequence xn, which is also known to the receiver, is transmitted over the channel. Then,
the equalizer may be designed, and then the actual message transmitted. To appreciate
the equalizer’s action as an inverse filter, suppose that the training sequence xn is a
white-noise sequence of variance σ2

x . According to the theory developed in Chapter 4,
the optimal filter estimating xn on the basis of yn is given by

H(z)= 1

σ2
εB(z)

[ Sxy(z)
B(z−1)

]
+

whereB(z) is the spectral factor of Syy(z)= σ2
εB(z)B(z−1). To simplify the discussion,

let us ignore the causal instruction:

H(z)= Sxy(z)
σ2
εB(z)B(z−1)

= Sxy(z)
Syy(z)

Since we have Y(z)= Hc(z)X(z)+V(z), we find

Sxy(z) = Sxx(z)Hc(z−1)+Sxv(z)= Sxx(z)Hc(z−1)= σ2
xHc(z−1)

Syy(z) = Hc(z)Hc(z−1)Sxx(z)+Svv(z)= σ2
xHc(z)Hc(z−1)+σ2

v

the equalizer’s transfer function is then

H(z)= Sxy(z)
Syy(z)

= σ2
xHc(z−1)

σ2
xHc(z)Hc(z−1)+σ2

v

It is seen that when the channel noise is weak (small σ2
v), the equalizer essentially

behaves as the inverse filter 1/Hc(z) of the channel.
In an adaptive implementation, we must use a filter with a finite number of weights.

These weights are adjusted adaptively until they converge to their optimal values. Again,
during this “training mode” a known pilot signal is sent over the channel and is received
as yn. At the receiving end, the pilot signal is locally generated and used in the adaptation
algorithm. This implementation is shown below.

7.8 Adaptive Echo Cancelers

Consider two speakers A and B connected to each other by the telephone network. As
a result of various impedance mismatches, when A’s speech reaches B, it manages to
“leak” through and echoes back to speaker A, as though it were B’s speech.
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An echo canceler may be placed near B’s end, as shown.

It produces an (optimum) estimate of A’s echo through B’s circuits, and then pro-
ceeds to cancel it from the signal returning to speaker A. Again, this is another case for
which optimal filtering ideas are ideally suited. An adaptive echo canceler is an adaptive
FIR filter placed as shown [22–27].

As always, the adaptive filter will adjust itself to cancel any correlations that might
exist between the secondary signal yn (A’s speech) and the primary signal xn (A’s echo).

7.9 Adaptive Noise Canceling

In many applications, two signals are available; one is composed of a desired signal
plus undesired noise interference, and the other is composed only of noise interference
which, if not identical with the noise part of the first signal, is correlated with it. This
is shown in Fig. 7.8. An adaptive noise canceler [10] is an adaptive filter as shown
in the Figure. It acts as a correlation canceler. If the signals xn and yn are in any
way correlated (i.e., the noise component of xn with yn), then the filter will respond by
adapting its weights until such correlations are canceled from the output en. It does so
by producing the best possible replica of the noise component of xn and proceeding to
cancel it. The output en will now consist mainly of the desired signal.

Fig. 7.8 Adaptive noise canceler.

There are many applications of adaptive noise canceling, such as adaptive sidelobe
cancellation, acoustic noise cancellation [28–32], canceling 60 Hz interference in EKG
recordings, plasma estimation [33], and ghost cancellation in television [34].



7.9. Adaptive Noise Canceling 317

An interesting property of the adaptive noise canceler is that when the secondary
signal yn is purely sinusoidal at some frequency ω0, the adaptive filter behaves as a
notch filter [10,35] at the sinusoid’s frequency, that is, the transfer relationship between
the primary input xn and the output en becomes the time-invariant transfer function
of a notch filter. This is a surprising property since the adaptation equations for the
weights and the filtering I/O equation are in general time-noninvariant. To understand
this effect, it proves convenient to work with complex-valued signals using a complex-
valued reformulation of the LMS algorithm [36]. We make a short digression on this,
first. We assume that xn, yn and the weights h(n) are complex-valued. The performance
index is replaced by

E = E[e∗nen]
where the I/O filtering equation is still given by

x̂n =
M∑
m=0

hmyn−m = hTy(n)

Since the weights h are complex, the index E depends on both the real and the imag-
inary parts of h. Equivalently, we may think of E as a function of the two independent
variables h and h∗. A complex change in the weights Δh will change the index to

E(h+Δh,h∗ +Δh∗)= E(h,h∗)+ΔhT
∂E
∂h
+Δh†

∂E
∂h∗

Choosing Δh to be proportional to the complex conjugate of the negative gradient,
that is,

Δh = −2μ
∂E
∂h∗

= 2μE[eny(n)∗]

will move the index E towards its minimum value; indeed,

E(h+Δh,h∗ +Δh∗)= E(h,h∗)−4μ
(
∂E
∂h

)† (
∂E
∂h

)
≤ E(h,h∗)

Thus, the complex version of the LMS algorithm consists simply of replacing the
instantaneous gradient by its complex conjugate [36]. We summarize the algorithm as
follows:

1. Compute x̂n = h(n)Ty(n).
2. Compute en = xn − x̂n.

3. Update weights h(n+ 1)= h(n)+2μeny(n)∗.

Using this complex version, we now discuss the notching behavior of the adaptive
filter. Suppose yn is sinusoidal

yn = Aejω0n

at some frequencyω0. Then, the weight-update equation becomes:

hm(n+ 1)= hm(n)+2μeny∗n−m = hm(n)+2μA∗e−jω0(n−m)

for m = 0,1, . . . ,M. The factor e−jω0(n−m) suggests that we look for a solution of the
form

hm(n)= fm(n)e−jω0(n−m)

Then, fm(n) must satisfy the difference equation

e−jω0fm(n+ 1)= fm(n)+2μA∗en
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As a difference equation in n, this equation has constant coefficients, and, therefore,
may be solved by z-transform techniques. Taking z-transforms of both sides we find

e−jω0zFm(z)= Fm(z)+2μA∗E(z)

which may be solved for Fm(z) in terms of E(z) to give

Fm(z)= E(z) 2μA∗ejω0

z− ejω0

On the other hand, the I/O filtering equation from yn to the output x̂n is

x̂n =
M∑
m=0

hm(n)yn−m =
M∑
m=0

fm(n)e−jω0(n−m)Aejω0(n−m) =
M∑
m=0

fm(n)A

or, in the z-domain

X̂(z)=
M∑
m=0

Fm(z)A = E(z)2μ(M + 1)|A|2ejω0

z− ejω0

Finally, the I/O equation from xn to en becomes

en = xn − x̂n
and, in the z-domain

E(z)= X(z)−X̂(z)= X(z)−E(z)2μ(M + 1)|A|2ejω0

z− ejω0

which may be solved for the transfer function E(z)/X(z)

E(z)
X(z)

= z− ejω0

z−Rejω0
, R ≡ 1− 2μ(M + 1)|A|2

This filter has a zero at z = ejω0 which corresponds to the notch at the frequencyω0.
For sufficiently small values of μ and A, the filter is stable; its pole is at z = Rejω0 and
can be made to lie inside the unit circle (0 < R < 1). If the primary input xn happens
to have a sinusoidal component at frequency ω0, this component will be completely
notched away from the output. This will take place even when the sinusoidal reference
signal is very weak (i.e., whenA is small). The implications of this property for jamming
by signal cancellation in adaptive array processing have been discussed in [37]. The
notching behavior of the adaptive noise canceler when the reference signal consists of
a sinusoid plus noise has been discussed in [38].

A related result is that the adaptive noise canceler behaves as a time-invariant comb
filter whenever its secondary input yn is a periodic train of impulses separated by some
period [39]. This property can be used to cancel periodic interference. Because the
method of signal averaging can be thought of as comb filtering, the above property
may also be used as an alternative method to perform signal averaging for pulling weak
periodic signals from background noise, such as evoked potentials [40].

7.10 Adaptive Line Enhancer

A special case of adaptive noise canceling is when there is only one signal xn available
which is contaminated by noise. In such a case, the signal xn provides its own reference
signal yn, which is taken to be a delayed replica of xn, that is, yn = xn−Δ, as shown in
Fig. 7.9, referred to as the adaptive line enhancer (ALE) [10,41–43].
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Fig. 7.9 Adaptive line enhancer.

Will such arrangement be successful? The adaptive filter will respond by canceling
any components of the main signal xn that are in any way correlated with the secondary
signal yn = xn−Δ. Suppose the signal xn consists of two parts: a narrowband component
that has long-range correlations such as a sinusoid, and a broadband component which
will tend to have short-range correlations. One of these could represent the desired
signal and the other an undesired interfering noise. Pictorially the autocorrelations of
the two components could look as follows.

where kNB and kBB are effectively the self-correlation lengths of the narrowband and
broadband components, respectively. Beyond these lags, the respective correlations die
out quickly. Suppose the delay Δ is selected so that

kBB ≤ Δ ≤ kNB

Since Δ is longer than the effective correlation length of the BB component, the
delayed replica BB(n − Δ) will be entirely uncorrelated with the BB part of the main
signal. The adaptive filter will not be able to respond to this component. On the other
hand, since Δ is shorter than the correlation length of the NB component, the delayed
replica NB(n−Δ) that appears in the secondary input will still be correlated with the NB
part of the main signal, and the filter will respond to cancel it. Thus, the filter outputs
will be as shown.

Note that if Δ is selected to be longer than both correlation lengths, the secondary
input will become uncorrelated with the primary input, and the adaptive filter will turn
itself off. In the opposite case, when the delay Δ is selected to be less than both correla-
tion lengths, then both components of the secondary signal will be correlated with the
primary signal, and therefore, the adaptive filter will respond to cancel the primary xn
completely. The computational algorithm for the ALE is as follows
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1. x̂n =
M∑
m=0

hm(n)y(n−m)=
M∑
m=0

hm(n)x(n−m−Δ)

2. en = xn − x̂n
3. hm(n+ 1)= hm(n)+2μenx(n−m−Δ) , m = 0,1, . . . ,M

The Wiener solution for the steady-state weights is h = R−1r, where R and r are both
expressible in terms of the autocorrelation of the signal xn, as follows:

Rij = E[yn−iyn−j]= E[xn−Δ−i xn−Δ−j]= Rxx(i− j)
ri = E[xnyn−i]= E[xnxn−Δ−i]= Rxx(i+Δ)

for i, j = 0,1, . . . ,M. When the input signal consists of multiple sinusoids in additive
white noise, the inverse R−1 may be obtained using the methods of Section 6.2, thus
resulting in a closed form expression for the steady-state optimal weights [43].

7.11 Adaptive Linear Prediction

A linear predictor is a special case of the ALE with the delay Δ = 1. It is shown in Fig.
7.10, where to be consistent with our past notation on linear predictors we have denoted
the main signal by yn. The secondary signal, the input to the adaptive filter, is then yn−1.
Due to the special sign convention used for linear predictors, the adaptation algorithm
now reads [44,45]

1. ŷn = −
[
a1(n)yn−1 + a2(n)yn−2 + · · · + aM(n)yn−M

]
2. en = yn − ŷn = yn + a1(n)yn−1 + · · · + aM(n)yn−M
3. am(n+ 1)= am(n)−2μenyn−m , m = 1,2 . . . ,M

The realization of Fig. 7.10 can be redrawn more explicitly as in Fig. 7.11. The
routine lmsap is an implementation of the LMS adaptive predictor. At each call, the
routine reads a sample yn, computes the filter output en, updates the filter coefficients
am(n) to their new valuesam(n+1) to be used by the next call, and updates the registers
of the tapped delay line. With a small modification it can be used in the adaptive array
problem (see below).

Fig. 7.10 Adaptive linear predictor.

Because of the importance of the adaptive predictor, we present a direct derivation
of the LMS algorithm as it applies to this case. The weights am are chosen optimally to
minimize the mean output power of the filter, that is, the mean-square prediction error:

E = E[e2
n]= aTRa = min (7.11.1)

where a = [1, a1, a2, . . . , aM]T is the prediction error filter. The performance index
(7.11.1) is minimized with respect to the M weights am. The gradient with respect to
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Fig. 7.11 Direct-form realization of adaptive predictor.

am is themth component of the vector 2Ra, namely,

∂E
∂am

= 2(Ra)m= 2
(
E[y(n)y(n)T]a

)
m = 2

(
E[y(n)y(n)Ta]

)
m

= 2
(
E[y(n)en]

)
m = 2E[enyn−m]

The instantaneous gradient is obtained by ignoring the expectation instruction. This
gives for the LMS time-update of themth weight

Δam(n)= −μ ∂E
∂am

= −2μenyn−m , m = 1,2, . . . ,M (7.11.2)

The adaptive predictor may be thought of as an adaptive whitening filter, or an anal-
ysis filter which determines the LPC model parameters adaptively. As processing of the
signal yn takes place, the autoregressive model parameters am are extracted on-line.
This is but one example of on-line system identification methods [46-54].

The extracted model parameters may be used in any desired way—for example, to
provide the autoregressive spectrum estimate of the signal yn. One of the advantages of
the adaptive implementation is that it offers the possibility of tracking slow changes in
the spectra of non-stationary signals. The only requirement for obtaining meaningful
spectrum estimates is that the non-stationary changes of the spectrum be slow enough
for the adaptive filter to have a chance to converge between changes. Typical applica-
tions are the tracking of sinusoids in noise whose frequencies may be slowly changing
[44,45,55], or tracking the time development of the spectra of non-stationary EEG sig-
nals [56,57]. At each time instant n, the adaptive weights am(n), m = 1,2, . . . ,M may
be used to obtain an instantaneous autoregressive estimate of the spectrum of yn in the
form

Sn(ω)= 1∣∣1+ a1(n)e−jω + a2(n)e−2jω + · · · + aM(n)e−Mjω
∣∣2

This is the adaptive implementation of the LP spectrum estimate discussed in Sec-
tion 6.2. The same adaptive approach to LP spectrum estimation may also be used in
the problem of multiple source location, discussed in Section 6.3. The only difference
in the algorithm is to replace yn−m by ym(n)—that is, by the signal recorded at themth
sensor at time n—and to use the complex-valued version of the LMS algorithm. For com-
pleteness, we summarize the computational steps in this case, following the notation of
Section 6.3.

1. e(n)= y0(n)+a1(n)y1(n)+a2(n)y2(n)+· · · + aM(n)yM(n)
2. am(n+ 1)= am(n)−2μe(n)y∗m(n) , m = 1,2, . . . ,M

At each time instant n, the corresponding spatial spectrum estimate may be com-
puted by

Sn(k)= 1∣∣1+ a1(n)e−jk + a2(n)e−2jk + · · · + aM(n)e−Mjk
∣∣2
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where the wavenumber k and its relationship to the angle of bearing was defined in Sec-
tion 6.3. Figure 7.12 shows the corresponding adaptive array processing configuration.

Fig. 7.12 Adaptive array processor.

The time-adaptive as well as the block-data adaptive methods of superresolution
array processing have been reviewed in [58,59]. The above LMS algorithm for the array
weights is effectively equivalent to the Howells-Applebaum algorithm [11–17]. Adaptive
predictors may also be used to improve the performance of spread-spectrum systems
[60–66].

7.12 Adaptive Implementation of Pisarenko’s Method

In Section 6.2, we noted that the Pisarenko eigenvalue problem was equivalent to the
minimization of the performance index

E = E[e∗nen]= a†Ra = min (7.12.1)

subject to the quadratic constraint
a†a = 1 (7.12.2)

where

en =
M∑
m=0

amyn−m = [a0, a1, . . . , aM]

⎡⎢⎢⎢⎢⎢⎣
yn
yn−1

...
yn−M

⎤⎥⎥⎥⎥⎥⎦ = aTy(n)

The solution of the minimization problem shown in Eqs. (7.12.1) and (7.12.2) is the
eigenvector a belonging to the minimum eigenvalue of the covariance matrix R. If there
are L sinusoids of frequencies ωi, i = 1,2, . . . , L, and we use a filter of order M, such
thatM ≥ L, then the eigenpolynomial A(z) corresponding to the minimum eigenvector
a will have L zeros on the unit circle at precisely the desired set of frequencies, that is,

A(zi)= 0 , where zi = ejωi , i = 1,2, . . . , L

The adaptive implementation [67] of the Pisarenko eigenvalue problem is based on
the above minimization criterion. The LMS gradient-descent algorithm can be used to
update the weights, but some care must be taken to satisfy the essential quadratic con-
straint (7.12.2) at each iteration of the algorithm. Any infinitesimal change da of the
weights must respect the constraint. This means the da cannot be arbitrary but must
satisfy the condition

d(a†a)= a†(da)+(da)†a = 0 (7.12.3)

so that the new weight a + da still lies on the quadratic surface a†a = 1. The ordinary
gradient of the performance index E is

∂E
∂a∗

= Ra
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Projecting this onto the surface a†a = 1 by the projection matrix P = I−aa†, where
I is the (M + 1)-dimensional unit matrix, we obtain the “constrained” gradient(

∂E
∂a∗

)
c
= P ∂E

∂a∗
= (I − aa†)(Ra)= Ra− Ea (7.12.4)

which is tangent to the constraint surface at the point a. The vanishing of the con-
strained gradient is equivalent to the Pisarenko eigenvalue problem. The weight update
can now be chosen to be proportional to the constrained gradient

Δa = −μ
(
∂E
∂a∗

)
c
= −μ(Ra− Ea)

The projection of the gradient onto the constraint surface is shown below.

This choice guarantees thatΔa satisfies Eq. (7.12.3); indeed, because of the projection
matrix in front of the gradient, it follows that a†Δa = 0. Actually, since Δa is not
infinitesimal, it will correspond to a finite motion along the tangent to the surface at
the point a. Thus, the new point a + Δa will be slightly off the surface and must be
renormalized to have unit norm. Using the properties,

R a = E[y(n)∗y(n)T]a = E[y(n)∗en] and E = E[e∗nen]

we write the update as

Δa = −μ(
E[eny(n)∗]−E[e∗nen]a

)
The LMS algorithm is obtained by ignoring the indicated ensemble expectation val-

ues. The weight adjustment procedure consists of two steps: first, shift the old weight
a(n) by Δa(n), and then renormalize it to unit norm:

a(n+ 1)= a(n)+Δa(n)
‖a(n)+Δa(n)‖ (7.12.5)

where the weight update is computed by

Δa(n)= −μ[
eny(n)∗−e∗nena(n)

]
(7.12.6)

In summary, the computational steps are as follows:

1. At time n, a(n) is available and normalized to unit norm.

2. Compute the output en =
∑M
m=0 am(n)yn−m = a(n)Ty(n).

3. Update the filter weights using Eq. (7.12.5) and (7.12.6).

4. Go to the next time instant, n→ n+ 1.

A realization of the adaptive filter is shown in Fig. 7.13. After a number of iterations,
the algorithm may be stopped and the Pisarenko spectrum estimate computed:
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Fig. 7.13 Adaptive implementation of Pisarenko’s method.

Sn(ω)= 1∣∣a0(n)+a1(n)e−jω + a2(n)e−2jω + · · · + aM(n)e−Mjω
∣∣2

After convergence, Sn(ω) should exhibit very sharp peaks at the sought frequencies
ωi, i = 1,2 . . . , L. The convergence properties of this algorithm have been studied in
[68]. Alternative adaptation schemes for the weights have been proposed in [69,70].
The algorithm may also be applied to the array problem of multiple source location [71].
Again, the only change is to replace yn−m by ym(n), depicted below.

Both the adaptive prediction and the Pisarenko approaches to the two problems of
extracting sinusoids in noise and multiple emitter location have a common aim, namely,
to produce an adaptive filter A(z) with zeros very near or on the unit circle at the
desired frequency angles. Taking the inverse magnitude response as an estimate of the
spectrum of the signal,

S(ω)= 1

|A(ω)|2
is a simple device to obtain a curve that exhibits sharp spectral peaks at the desired
frequencies.

A satisfactory alternative approach would be simply to find the roots of the polyno-
mial A(z) and pick those that are closest to the unit circle. The phase angles of these
roots are precisely the desired frequencies. In other words, the frequency information
we are attempting to extract by means of the adaptive filter is more directly represented
by the zeros of the filter than by its weights.

It would be desirable then to develop methods by which these zeros can be esti-
mated directly without having to submit the filter A(z) to root-finding algorithms. In
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implementing this idea adaptively, we would like to adapt and track the zeros of the
adaptive filter as they move about on the complex z-plane, converging to their final
destinations which are the desired zeros. In this way, the frequency information can
be extracted directly. Such “zero-tracking” adaptation algorithms have been proposed
recently [72,73].

Even though the representations of the filter in terms of its zeros and in terms of its
weights are mathematically equivalent, the zero representation may be more appropriate
in some applications in the sense that a better insight into the nature of the underlying
processes may be gained from it than from the weight representation.

As an example, we mention the problem of predicting epileptic seizures by LPC
modeling of the EEG signal where it was found [74] that the trajectories of the zeros
of the prediction-error filter on the z-plane exhibited an unexpected behavior, namely,
prior to the onset of a seizure, one of the zeros became the “most mobile” and moved
towards the unit circle, whereas the other zeros did not move much. The trajectory of
the most mobile zero could be used as a signature for the onset of the oncoming seizure.
Such behavior could not be easily discerned by the frequency response or by the final
zero locations.

Next, we describe briefly the zero-tracking algorithm as it applies to the Pisarenko
problem and present a simulation example. Its application to adaptive prediction and to
emitter location has been discussed in [73]. For simplicity, we assume that the number
of sinusoids that are present is the same as the order of the filter a, that is, L =M. The
case L < M will be discussed later on. The eigenpolynomial of the minimum eigenvector
a may be factored into its zeros as follows:

A(z) = a0 + a1z−1 + a2z−2 + · · · + aMz−M

= a0(1− z1z−1)(1− z2z−1)· · · (1− zMz−1)
(7.12.7)

where a0 may be thought of as a normalization factor which guarantees the unit norm
constraint (7.12.2), and zi = ejωi , i = 1,2, . . . ,M are the desired sinusoid zeros on the
unit circle.

In the adaptive implementation, the weights am become time-dependent am(n) and
are adapted from each time instant to the next until they converge to the asymptotic
values defined by Eq. (7.12.7). At each n, the corresponding polynomial can be factored
into its zeros as follows:

a0(n)+a1(n)z−1 + a2(n)z−2 + · · · + aM(n)z−M

= a0(n)
(
1− z1(n)z−1)(1− z2(n)z−1) · · · (1− zM(n)z−1) (7.12.8)

where again the factor a0(n) ensures the unit-norm constraint. In the zero-tracking
algorithm, the weight update equation (7.12.5) is replaced by a zero-update equation of
the form:

zi(n+ 1)= zi(n)+Δzi(n) , i = 1,2, . . . ,M (7.12.9)

where the zero updatesΔzi(n)must be such that to ensure the convergence of the zeros
to their asymptotic values zi. One way to do this is to make the algorithm equivalent
to the LMS algorithm. The functional dependence of zi(n) on am(n) defined by Eq.
(7.12.8) implies that if the weights am(n) are changed by a small amountΔam(n) given
by Eq. (7.12.6), then a small change Δzi(n) will be induced on the corresponding zeros.
This is given as follows:

Δzi(n)=
M∑
m=0

∂zi(n)
∂am

Δam(n) (7.12.10)

where the partial derivatives are given by [75]
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∂zi(n)
∂am

= − 1

a0(n)
zi(n)M−m∏

j 	=i

(
zi(n)−zj(n)

) , 0 ≤m ≤M (7.12.11)

Equation (7.12.10) is strictly valid for infinitesimal changes, but for small μ, it can
be taken to be an adequate approximation for the purpose of computing Δzi(n). The
advantage of this expression is that only the current zeros zi(n) are needed to compute
Δzi(n). The complete algorithm is summarized as follows:

1. At time n, the zeros zi(n), i = 1,2, . . . ,M are available.

2. Using convolution, compute the corresponding filter weights and normalize them
to unit norm, that is, first convolve the factors of Eq. (7.12.8) to obtain the vector

b(n)T = [
1, b1(n), b2(n), . . . , bM(n)

]
= [

1, −z1(n)
]∗ [

1, −z2(n)
]∗ · · · ∗ [

1, −zM(n)
]

and then normalize b(n) to unit norm:

a(n)= b(n)
‖b(n)‖

3. Compute the filter output en = a(n)Ty(n).
4. Compute the LMS coefficient updates Δam(n) using Eq. (7.12.6). Compute the

zero updatesΔzi(n) using Eqs. (7.12.10) and (7.12.11), and update the zeros using
Eq. (7.12.9).

The algorithm may be initialized by a random selection of the initial zeros inside the
unit circle in the z-plane. Next, we present a simulation example consisting of a fourth
order filter and four sinusoids

yn = vn + ejω1n + ejω2n + ejω3n + ejω4n

with frequencies

ω1 = 0.25π, ω2 = −0.25π, ω3 = 0.75π, ω4 = −0.75π

and a zero-mean, unit-variance, white noise sequence vn (this corresponds to all sinu-
soids having 0 dB signal to noise ratio). The value of μ was 0.001. Figure 7.14 shows
the adaptive trajectories of the four filter zeros as they converge onto the unit circle at
the above frequency values. After convergence, the adaptive zeros remain within small
neighborhoods about the asymptotic zeros. The diameter of these neighborhoods de-
creases with smaller μ, but so does the speed of convergence [73].

The transient behavior of the zeros can be seen by plotting zi(n) versus iteration
number n. Figure 7.15 shows the real and imaginary parts of the adaptive trajectory
of the zero z2(n) converging to the real and imaginary parts of the asymptotic zero
z2 = ejω2 = e−j0.25π = (1− j)/√2.

When the number L of sinusoids is less than the order M of the filter, only L of
the M zeros zi(n) of the filter will be driven to the unit circle at the right frequency
angles. The remaining (M − L) zeros correspond to spurious degrees of freedom (the
degeneracy of the minimum eigenvalue σ2

v), and are affected by the adaptation process
only insofar as the M zero trajectories are not entirely independent of each other but
are mutually coupled through Eq. (7.12.11). Where these spurious zeros converge to
depends on the particular initialization. For some special initial conditions it is possible
for the spurious zeros to move close to the unit circle, thus causing a confusion as to
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Fig. 7.14 z-Plane trajectories of the four adaptive zeros zi(n), i = 1,2,3,4.
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Fig. 7.15 Real and imaginary parts of z2(n) versus n.

which are the true sinusoid zeros. To safeguard against such a possibility, the algorithm
may be run again with a different choice of initial zeros. Figure 7.16 shows the adaptive
trajectory of a single sinusoid, L = 1, using a third order filter, M = 3. The sinusoid’s
frequency was ω1 = 0.25π, its SNR was 0 dB, and μ was 0.001. One of the three filter
zeros is driven to the unit circle at the desired angle ω1, while the two spurious zeros
traverse fairly short paths which depend on their initial positions.

7.13 Gradient Adaptive Lattice Filters

In this section we discuss the “gradient adaptive lattice” implementations of linear pre-
diction and lattice Wiener filters [76–81]. They are based on a gradient-descent, LMS-like
approach applied to the weights of the lattice representations rather than to the weights
of the direct-form realization. Taking advantage of the decoupling of the successive
stages of the lattice, and properly choosing the adaptation constantsμ, all lattice weights
can be made to converge fast and, in contrast to the LMS weights, with a convergence
rate that is essentially independent of the eigenvalue spread of the input covariance ma-
trix. The gradient lattice algorithms are very similar but not identical to the recursive
least-squares lattice algorithms (RLSL) [102–110], and they share the same properties of
fast convergence and computational efficiency with the latter. Typically, the gradient
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Fig. 7.16 Single sinusoid with order-3 adaptive filter.

lattice converges somewhat more slowly than RLSL. Some comparisons between the two
types of algorithms are given in [81,109].

We start by casting the ordinary lattice filter of linear prediction in a gradient-
adaptive form, and then discuss the gradient-adaptive form of the lattice Wiener filter,
the stationary version of which was presented in Section 5.11.

The lattice recursion for an Mth order prediction-error filter of a stationary signal
yn was found in Section 5.7 to be

e+p+1(n) = e+p (n)−γp+1e−p (n− 1)

e−p+1(n) = e−p (n− 1)−γp+1e+p (n)
(7.13.1)

for p = 0,1, . . . ,M − 1, and where e±0 (n)= yn. The optimal value of the reflection
coefficient γp+1 can be obtained by minimizing the performance index

Ep+1 = E[e+p+1(n)2+e−p+1(n)2] (7.13.2)

Differentiating with respect to γp+1, we find

∂Ep+1

∂γp+1
= E

[
e+p+1(n)

∂e+p+1(n)
∂γp+1

+ e−p+1(n)
∂e−p+1(n)
∂γp+1

]

and using Eq. (7.13.1)

∂Ep+1

∂γp+1
= −2E

[
e+p+1(n)e−p (n− 1)+e−p+1(n)e+p (n)

]
(7.13.3)

Inserting Eq. (7.13.1) into Eq. (7.13.3), we rewrite the latter as

∂Ep+1

∂γp+1
= −2(Cp+1 − γp+1Dp+1) (7.13.4)

where
Cp+1 = 2E

[
e+p (n)e−p (n− 1)

]
(7.13.5)

Dp+1 = E
[
e+p (n)2+e−p (n− 1)2] (7.13.6)

Setting the gradient (7.13.4) to zero, we find the optimal value of γp+1

γp+1 = Cp+1

Dp+1
= 2E

[
e+p (n)e−p (n− 1)

]
E
[
e+p (n)2+e−p (n− 1)2

] (7.13.7)
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which, due to the assumed stationarity, agrees with Eq. (5.7.4). Replacing the numerator
and denominator of Eq. (7.13.7) by time averages leads to Burg’s method.

The gradient adaptive lattice is obtained by solving ∂Ep+1/∂γp+1 = 0 iteratively by
the gradient-descent method

γp+1(n+ 1)= γp+1(n)−μp+1
∂Ep+1

∂γp+1(n)
(7.13.8)

where μp+1 is a small positive adaptation constant. Before we drop the expectation
instructions in Eq. (7.13.3), we use the result of Eq. (7.13.4) to discuss qualitatively the
convergence rate of the algorithm. Inserting Eq. (7.13.4) into Eq. (7.13.8), we find

γp+1(n+ 1)= γp+1(n)+2μp+1(Cp+1 − γp+1(n)Dp+1)

or,
γp+1(n+ 1)= (1− 2μp+1Dp+1)γp+1(n)+2μp+1Cp+1 (7.13.9)

Actually, if we replace γp+1 by γp+1(n) in Eq. (7.13.1), the stationarity of the lattice
is lost, and it is not correct to assume that Cp+1 and Dp+1 are independent of n. The
implicit dependence of Cp+1 and Dp+1 on the (time-varying) reflection coefficients of
the previous lattice stages makes Eq. (7.13.9) a nonlinear difference equation in the
reflection coefficients. In the analogous discussion of the LMS case in Section 7.6, the
corresponding difference equation for the weights was linear with constant coefficients.
Because of the tapped delay-line structure, the stationarity of the input signal y(n) was
not affected by the time-varying weights. Nevertheless, we will use Eq. (7.13.9) in a
qualitative manner, replacing Cp+1 and Dp+1 by their constant asymptotic values, but
only for the purpose of motivating the final choice of the adaptation parameter μp+1.
The solution of Eq. (7.13.9), then, is

γp+1(n)= γp+1 + (1− 2μp+1Dp+1)n(γp+1(0)−γp+1) (7.13.10)

where γp+1 is the asymptotic value of the weight given in Eq. (7.13.7). The stability of
Eqs. (7.13.9) and (7.13.10) requires that

|1− 2μp+1Dp+1| < 1 (7.13.11)

If we choose μp+1 as

2μp+1 = α
Dp+1

(7.13.12)

then 1 − 2μp+1Dp+1 = 1 − α will satisfy Eq. (7.13.11). Note that α was chosen to be
independent of the order p. This implies that all reflection coefficients γp+1(n) will
essentially converge at the same rate. Using Eqs. (7.13.3) and (7.13.12), we write Eq.
(7.13.8) as follows:

γp+1(n+ 1)= γp+1(n)+ α
Dp+1

E
[
e+p+1(n)e−p (n− 1)+e−p+1(n)e+p (n)

]
(7.13.13)

The practical implementation of this method consists of ignoring the expectation
instruction, and using a least-squares approximation for Dp+1 of the form [76–78]

Dp+1(n)= (1− λ)
n∑
k=0

λn−k
[
e+p (k)2+e−p (k− 1)2] (7.13.14)

where 0 < λ < 1. It may also be computed recursively by

Dp+1(n)= λDp+1(n− 1)+(1− λ)[e+p (n)2+e−p (n− 1)2] (7.13.15)
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This quantity is a measure of Dp+1 of Eq. (7.13.6); indeed, taking expectations of
both sides and assuming stationarity, we find

E
[
Dp+1(n)

] = (1− λ) n∑
k=0

λn−kE
[
e+p (k)2+e−p (k− 1)2]

= (1− λ)
n∑
k=0

λn−kDp+1 = (1− λn+1)Dp+1

which converges to Dp+1 for large n. With the above changes, we obtain the adaptive
version of Eq. (7.13.13),

γp+1(n+ 1)= γp+1(n)+ α
Dp+1(n)

[
e+p+1(n)e−p (n− 1)+e−p+1(n)e+p (n)

]
(7.13.16)

It can be written in a slightly different form by defining the quantity

dp+1(n) =
n∑
k=0

λn−k
[
e+p (k)2+e−p (k− 1)2]

= λdp+1(n− 1)+[
e+p (n)2+e−p (n− 1)2] (7.13.17)

and noting thatDp+1(n)= (1−λ)dp+1(n). Defining the new parameter β = α/(1−λ),
we rewrite Eq. (7.13.16) in the form

γp+1(n+ 1)= γp+1(n)+ β
dp+1(n)

[
e+p+1(n)e−p (n− 1)+e−p+1(n)e+p (n)

]
(7.13.18)

This is usually operated with β = 1 or, equivalently, α = 1− λ. This choice makes
Eq. (7.13.18) equivalent to a recursive reformulation of Burg’s method [76–78]. This
may be seen as follows. Set β = 1 and define the quantity cp+1(n) by

cp+1(n)=
n∑
k=0

λn−k
[
2e+p (k)e−p (k− 1)

]
Then, inserting Eq. (7.13. l ) , with γp+1 replaced by γp+1(n), into Eq. (7.13.18), we

find after some algebra

γp+1(n+ 1)= cp+1(n)
dp+1(n)

or, written explicitly

γp+1(n+ 1)=
2
n∑
k=0

λn−k
[
e+p (k)e−p (k− 1)

]
n∑
k=0

λn−k
[
e+p (k)2+e−p (k− 1)2] (7.13.19)

which corresponds to Burg’s method, and also guarantees that |γp+1(n+1)|will remain
less than one at each iteration. The adaptive lattice is depicted in Fig. 7.17. At each time
instant n, the order recursions (7.13.1) are

e+p+1(n) = e+p (n)−γp+1(n)e−p (n− 1)

e−p+1(n) = e−p (n− 1)−γp+1(n)e+p (n)
(7.13.20)

for p = 0,1, . . . ,M−1, with γp+1(n) updated in time using Eq. (7.13.18) or Eq. (7.13.19).
Initialize (7.13.20) by e±0 (n)= yn. We summarize the computational steps as follows:
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Fig. 7.17 Adaptive lattice predictor.

1. At time n, the coefficients γp+1(n) and dp+1(n− 1) are available.

2. Iterate Eq. (7.13.20) for p = 0,1, . . . ,M − 1.

3. Using Eq. (7.13.17), compute dp+1(n) for p = 0,1, . . . ,M − 1.

4. Using Eq. (7.13.18), compute γp+1(n+ 1) for p = 0,1, . . . ,M − 1.

5. Go to n→ n+ 1.

Next, we discuss the adaptive lattice realization of the FIR Wiener filter of Section
5.11. We use the same notation as in that section. The time-invariant lattice weights gp
are chosen optimally to minimize the mean-square estimation error

E = E[e2
n]= min (7.13.21)

where en = xn − x̂n, and

x̂n =
M∑
p=0

gpe−p (n)= [g0, g1, . . . , gM]

⎡⎢⎢⎢⎢⎢⎣
e−0 (n)
e−1 (n)

...
e−M(n)

⎤⎥⎥⎥⎥⎥⎦ = gTe−(n) (7.13.22)

The gradient with respect to g is

∂E
∂g
= −2E

[
ene−(n)

]
(7.13.23)

Inserting Eq. (7.13.22) into Eq. (7.13.23), we rewrite the latter as

∂E
∂g
= −2(r−Rg) (7.13.24)

where r and R are defined in terms of the backward lattice signals e−p (n) as

r = E[
xne−(n)

]
, R = E[

e−(n)e−(n)T
]

(7.13.25)

The gradient-descent method applied to the weights g is

g(n+ 1)= g(n)−M ∂E
∂g(n)

(7.13.26)

where, following the discussion of Section 7.6, we have used a positive definite symmet-
ric adaptation matrixM, to be chosen below. Then, Eq. (7.13.26) becomes

g(n+ 1)= (I − 2MR)g(n)+2Mr (7.13.27)

The orthogonality of the backward prediction errors e−(n) causes their covariance
matrix R to be diagonal

R = diag{E0, E1, . . . , EM} (7.13.28)
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where Ep is the variance of e−p (n)

Ep = E
[
e−p (n)2] , p = 0,1, . . . ,M (7.13.29)

If we choose M to be diagonal, say, M = diag{μ0, μ1, . . . , μM}, then the state ma-
trix (I − 2MR) of Eq. (7.13.27) will also be diagonal and, therefore, Eq. (7.13.27) will
decouple into its individual components

gp(n+ 1)= (1− 2μpEp)gp(n)+2μprp , p = 0,1, . . . ,M (7.13.30)

where rp = E
[
xne−p (n)

]
. Its solution is

gp(n)= gp + (1− 2μpEp)n(gp(0)−gp) (7.13.31)

where gp = rp/Ep are the optimal weights. The convergence rate depends on the quan-
tity (1− 2μpEp). Choosing μp such that

2μp = α
Ep
, 0 < α < 1 (7.13.32)

implies that all lattice weights gp(n) will have the same rate of convergence. Using Eqs.
(7.13.32) and (7.13.23) we can rewrite Eq. (7.13.26) component-wise as follows

gp(n+ 1)= gp(n)+ αEpE
[
ene−p (n)

]
Ignoring the expectation instruction, and replacing Ep by its time average,

Ep(n)= (1− λ)
n∑
k=0

λn−ke−p (k)2= λEp(n− 1)+(1− λ)e−p (n)2 (7.13.33)

we obtain the adaptation equation for the pth weight

gp(n+ 1)= gp(n)+ α
Ep(n)

ene−p (n) , p = 0,1, . . . ,M (7.13.34)

Defining

d−p (n)=
n∑
k=0

λn−ke−p (k)2= λd−p (n− 1)+e−p (n)2 (7.13.35)

and noting that Ep(n)= (1− λ)d−p (n), we rewrite Eq. (7.13.34) as

gp(n+ 1)= gp(n)+ β
d−p (n)

ene−p (n) , p = 0,1, . . . ,M (7.13.36)

where β = α/(1 − λ). Typically, Eq. (7.13.36) is operated with β = 1, or α = 1 − λ
[76,78]. The realization of the adaptive lattice Wiener filter is shown in Fig. 7.18.

A slightly different version of the algorithm is obtained by replacing en in Eq. (7.13.36)
by ep(n), that is, the estimation error based on a pth order Wiener filter:

ep(n)= xn − x̂p(n) , x̂p(n)=
p∑
i=0

gie−i (n)

It satisfies the recursions (5.11.10) through (5.11.11). This version arises by mini-
mizing the order-p performance index Ep = E

[
ep(n)2

]
rather than the order-M per-

formance index (7.13.21). This version is justified by the property that all lower order
portions of g are already optimal. If {g0, g1, . . . , gp−1} are already optimal, then to go
to the next order p it is only necessary to determine the optimal value of the new weight
gp, which is obtained by minimizing Ep with respect to gp. The overall algorithm is
summarized below:
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1. At time n, the quantities γp(n), dp(n−1), for p = 1,2, . . . ,M and gp(n), d−p (n−
1), for p = 0,1, . . . ,M, are available, as well as the current input samples xn, yn.

2. Initialize in order by

e±0 (n)= yn , x̂0(n)= g0(n)e−0 (n) , e0(n)= xn − x̂0(n)

d−0 (n)= λd−0 (n− 1)+e−0 (n)2

g0(n+ 1)= g0(n)+ β
d−0 (n)

e0(n)e−0 (n)

3. For p = 1,2, . . . ,M, compute:

e+p (n)= e+p−1(n)−γp(n)e−p−1(n− 1)

e−p (n)= e−p−1(n− 1)−γp(n)e+p−1(n)

dp(n)= λdp(n− 1)+e+p−1(n)2+e−p−1(n− 1)2

γp(n+ 1)= γp(n)+ β
dp(n)

[
e+p (n)e

−
p−1(n− 1)+e−p (n)e+p−1(n)

]
x̂p(n)= x̂p−1(n)+gp(n)e−p (n)
ep(n)= ep−1(n)−gp(n)e−p (n)
d−p (n)= λd−p (n− 1)+e−p (n)2

gp(n+ 1)= gp(n)+ β
d−p (n)

ep(n)e−p (n)

4. Go to the next time instant, n→ n+ 1.

The adaptation of the reflection coefficientsγp(n) provides a gradual orthogonaliza-
tion of the backward error signals e−p (n), which in turn drive the adaptation equations
for the lattice weights gp(n).

The algorithm is initialized in time by setting γp(0)= 0, dp(−1)= 0, gp(0)= 0,
d−p (−1)= 0. Because initially all the γs and the delay registers of the lattice are zero, it
follows that the backward output of the pth lattice section, e−p (n), will be zero for n < p.
The corresponding d−p (n) will also be zero and thus cannot be used in the updating of
gp(n). During this startup period, we keep gp(n)= 0, n < p. A similar problem
does not arise for the γs because dp(n) contains contributions from the forward lattice
outputs, which are not zero.

Fig. 7.18 Adaptive lattice Wiener filter.
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The subroutine glwf (see Appendix B) is an implementation of the gradient lattice
Wiener filter. It is the same as lwf with the weight adaptation parts added to it. Next,
we present a simulation example. The signals xn and yn were generated by

xn = yn + 1.5yn−1 − 2yn−2 + un , yn = 0.75yn−1 − 0.5yn−2 + εn
where un and εn were mutually independent, zero-mean, unit-variance, white noises. It
follows from our general discussion in Section 7.5 that we must use a Wiener filter of
order at leastM = 2 to cancel completely the y-dependent part of xn. Solving the order-
two linear prediction problem for yn using bkwlev, we find the theoretical Lmatrix and
reflection coefficients

L =
⎡⎢⎣ 1 0 0
−0.5 1 0

0.5 −0.75 1

⎤⎥⎦ , γ1 = 0.5 , γ2 = −0.5 (7.13.37)

The direct-form coefficients of the Wiener filter are precisely the coefficients of the
y-dependent part of xn. Thus, we have

h =
⎡⎢⎣ 1

1.5
−2

⎤⎥⎦ , g = L−Th =
⎡⎢⎣ 2

0
−2

⎤⎥⎦ (7.13.38)

In the simulation we generated 100 samples of xn and yn (after letting the transients
of the difference equation of yn die out). The routine glwf was run on these samples
with λ = 1 and β = 1. Figure 7.19 shows the adaptive reflection coefficients γ1(n)
and γ2(n) versus iteration number n. Figure 7.20 shows the three coefficients gp(n),
p = 0,1,2, versus n, converging to their theoretical values gp above. For comparison
purposes, we have also included the direct-form weight h2(n) adapted according to
the standard LMS algorithm with μ = 0.01. It should be compared to g2(n) because by
construction the last elements of g and h are the same; here, g2 = h2. The LMS algorithm
can be accelerated somewhat by using a larger μ, but at the expense of increasing the
noisiness of the weights.
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Fig. 7.19 and Fig. 7.20 Adaptive coefficients γp(n) and gp(n).

7.14 Adaptive Gram-Schmidt Preprocessors

In this section we derive the spatial analogs of the gradient adaptive lattice algorithms.
The main function of the adaptive lattice filter is to decorrelate the tapped delay-line
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data vector y(n)= [yn, yn−1, . . . , yn−M]T. In effect, it carries out the Gram-Schmidt
orthogonalization of the components of y(n) at each time instant n. In array processing
problems, because the data vector y(n)= [y0(n), y1(n), . . . , yM(n)]T does not have
the tapped-delay line property, the Gram-Schmidt orthogonalization cannot be done by
a simple a lattice filter. It requires a more complicated structure that basically amounts
to carrying out the lower triangular linear transformation y = Bεεε, which decorrelates
the covariance matrix of y.

The Gram-Schmidt construction of an arbitrary random vector y was discussed in
Section 1.5. Here, we recast these results in a way that can be used directly in gradient-
adaptive implementations. The Gram-Schmidt construction proceeds recursively start-
ing at one end, say, ε0 = y0. At the mth step of the recursion, we have available the
mutually decorrelated components {ε0, ε1, . . . , εm−1}. The next component εm is de-
fined by

εm = ym −
m−1∑
i=0

bmiεi , bmi = 1

Ei
E[ymεi] (7.14.1)

where Ei = E[ε2
i ]. By construction, εm is decorrelated from all the previous εis, that

is, E[εmεi]= 0, i = 0,1 . . . ,m − 1. The summation term in Eq. (7.14.1) represents the
optimum estimate of ym based on the previous εis and εm represents the estimation
error. Therefore, the coefficients bmi can also be derived by the mean-square criterion

Em = E[ε2
m]= min (7.14.2)

The gradient with respect to bmi is

∂Em
∂bmi

= −2E[εmεi]= −2
(
E[ymεi]−bmiEi

)
(7.14.3)

where we used the fact that the previous εis are already decorrelated, so that E[εiεj]=
δijEi, for i, j = 0,1, . . . ,m − 1. Setting the gradient to zero gives the optimum so-
lution (7.14.1) for bmi. In a gradient-adaptive approach, the coefficients bmi will be
time-dependent, bmi(n), and updated by

bmi(n+ 1)= bmi(n)−μmi ∂Em
∂bmi(n)

= bmi(n)+2μmiE[εmεi] (7.14.4)

Using the above expression for the gradient, we find the difference equation

bmi(n+ 1)= (1− 2μmiEi)bmi(n)+2μmiE[ymεi]

with solution, for n ≥ 0

bmi(n)= bmi + (1− 2μmiEi)n(bmi(0)−bmi)
where bmi is the optimum solution (7.14.1). As in Section 7.13, because of the diagonal
nature of the covariance matrix of the previous εis, the system of difference equations
for the bmis decouples into separate scalar equations. Choosing μmi by

2μmi = αEi , 0 < α < 1

implies that all coefficients bmi(n) will converge at the same rate. With this choice, Eq.
(7.14.4) becomes

bmi(n+ 1)= bmi(n)+αEi E[εmεi]
As before, we may replace Ei by its weighted time average Ei(n)= (1−λ)di(n), where

di(n)=
n∑
k=0

λn−kεi(k)2= λdi(n− 1)+εi(n)2
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Setting β = α/(1−λ) and dropping the expectation values, we obtain the adaptive
Gram-Schmidt algorithm:

1. At time n, bmi(n) and di(n − 1) are available, and also the current data vec-
tor y(n)= [y0(n), y1(n), . . . , yM(n)]T. ( The algorithm is initialized in time by
bmi(0)= 0 and di(−1)= 0.)

2. Set ε0(n)= y0(n).

3. Form = 1,2, . . . ,M, compute:

εm(n)= ym(n)−
m−1∑
i=0

bmi(n)εi(n)

dm−1(n)= λdm−1(n)+εm−1(n)2

for i = 0,1 . . . ,m− 1, compute:

bmi(n+ 1)= bmi(n)+ β
di(n)

εm(n)εi(n)

4. Go to the next time instant, n→ n+ 1.

The conventional Gram-Schmidt construction builds up the matrix B row-wise; for
example in the caseM = 3

B =

⎡⎢⎢⎢⎣
1 0 0 0
b10 1 0 0
b20 b21 1 0
b30 b31 b32 1

⎤⎥⎥⎥⎦
According to Eq. (7.14.l), εm is constructed from the entries of the mth row of

B. This gives rise to the block-diagram realization of the Gram-Schmidt construction
shown in Fig. 7.21. We will see shortly that each circular block represents an elementary
correlation canceling operation of the type [15,82–86]

e = u− bv

with

E[ev]= 0 ⇒ b = E[uv]
E[v2]

Therefore, each block can be replaced by an ordinary adaptive CCL or by an ac-
celerated CCL, as discussed below. This point of view leads to an alternative way of
organizing the Gram-Schmidt construction with better numerical properties, known as
the modified Gram-Schmidt procedure [87], which builds up the matrix B column-wise.
Let bi be the ith column of B, so that

y = Bεεε = [b0,b1, . . . ,bM]

⎡⎢⎢⎢⎢⎢⎣
ε0

ε1

...
εM

⎤⎥⎥⎥⎥⎥⎦ =
M∑
j=0

bjεj

Removing the contribution of the first i columns, we define for i = 1,2, . . . ,M

yi = y−
i−1∑
j=0

bjεj =
M∑
j=i

bjεj (7.14.5)
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Fig. 7.21 Gram-Schmidt array preprocessor.

Component-wise, we write

yim =
M∑
j=i
bmjεj , m = 0,1, . . . ,M

It follows from the lower-triangular nature of B that yim = 0 for m < i. Moreover,
because B has unit diagonal, we have atm = i that yii = biiεi = εi. Thus,

εi = yii (7.14.6)

Equation (7.14.5) can be written recursively as follows

yi = biεi +
M∑

j=i+1

bjεj = biεi + yi+1

or,

yi+1 = yi − biεi

and component-wise, yi+1,m = yim − bmiεi. The recursion is initialized by y0 = y. It is
evident by inspecting Fig. 7.21 that yi represents the output column vector after each
column operation. Equation (7.14.7) shows also that each circular block is an elementary
correlation canceler. This follows by noting that yi+1 is built out of εj with j ≥ i + 1,
each being uncorrelated with εi. Thus,

E[εiyi+1]= E[εiyi]−biEi = 0 ⇒ bi = 1

Ei
E[εiyi]

or, component-wise

bmi = 1

Ei
E[εiyim] , m = i+ 1, i+ 2, . . . ,M (7.14.7)

An adaptive implementation can be obtained easily by writing

bi(n+ 1)= bi(n)+2μiE[εiyi+1]= (1− 2μiEi)bi(n)+2μiE[εiyi]

As usual, we set 2μi = α/Ei, replace Ei by Ei(n)= (1 − λ)di(n), and drop the
expectation values to obtain the following algorithm, which adapts the matrix elements
of B column-wise:

1. At time n, bmi(n) and di(n − 1) are available, and also the current data vector
y(n)= [y0(n), y1(n), . . . , yM(n)]T.



338 7. Adaptive Filters

2. Define y0m(n)= ym(n), form = 0,1, . . . ,M.

3. For i = 0,1, . . . ,M, compute:

εi(n)= yii(n)
di(n)= λdi(n− 1)+εi(n)2

For i+ 1 ≤m ≤M, compute:

yi+1,m(n)= yim(n)−bmi(n)εi(n)

bmi(n+ 1)= bmi(n)+ β
di(n)

εi(n)yi+1,m(n)

4. Go to the next time instant, n→ n+ 1.

The algorithm may be appended to provide an overall Gram-Schmidt implementation
of the adaptive linear combiner of Section 7.4. In the decorrelated basis, the estimate of
xn and estimation error may be written order recursively as

x̂i(n)= x̂i−1(n)+gi(n)εi(n) , ei(n)= ei−1(n)−gi(n)εi(n) (7.14.8)

with the weights gi(n) adapted by

gi(n+ 1)= gi(n)+ β
di(n)

ei(n)εi(n) , i = 0,1, . . . ,M (7.14.9)

The subroutine mgs (see Appendix B) is an implementation of the adaptive modified
Gram-Schmidt procedure. At each call, the routine reads the snapshot vector y, com-
putes the decorrelated vector εεε, and updates the matrix elements of B in preparation
for the next call. An LMS-like version can be obtained by replacing the accelerated CCLs
by ordinary CCLs [15]

bmi(n+ 1)= bmi(n)+2μεi(n)yi+1,m(n) (7.14.10)

An exact recursive least squares version of the modified Gram-Schmidt algorithm can
also be derived [86]. It bears the same relationship to the above gradient-based version
that the exact RLS lattice filter bears to the gradient lattice filter. The computational
complexity of the algorithm is high because there are M(M + 1)/2 coefficients to be
adapted at each time instant, namely, the matrix elements in the strictly lower triangular
part of B. By contrast, in the lattice structure there are onlyM reflection coefficients to
be adapted. Despite its computational complexity, the algorithm is quite modular, built
out of elementary CCLs.

Next, we present a simulation example of order M = 2. The vectors y were con-
structed by

y =
⎡⎢⎣ 1 0 0
−2 1 0

1 2 1

⎤⎥⎦
⎡⎢⎣ ε0

ε1

ε2

⎤⎥⎦ = Bεεε
with the components of εεε having variances E0 = 1, E1 = 4, and E2 = 9. We generated
100 independent snapshots εεε and computed the corresponding y = Bεεε. Figure 7.22
shows the two matrix elements b10(n) and b21(n) adapted by running mgs on the
100 snapshots with λ = 1 and β = 1. They are converging to the theoretical values
b10 = −2 and b21 = 2. Figure 7.23 shows the same two matrix elements adapted by the
LMS algorithm (7.14.11) with μ = 0.01.
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Fig. 7.22 and Fig. 7.23 Modified Gram-Schmidt algorithm and its LMS version.

7.15 Rank-One Modification of Covariance Matrices

All recursive least-squares (RLS) algorithms, conventional, lattice, and fast direct-form
structures, can be derived from the rank-one updating properties of covariance matri-
ces. In this section we discuss these properties and derive all the necessary algebraic
steps and computational reductions that make the fast RLS versions possible. In the suc-
ceeding sections, we couple these results with the so-called shift-invariance property to
close the loop, as it were, and complete the derivation of the fast RLS algorithms.

The rank-one modification of a covariance matrix R0 is obtained by adding the rank-
one term

R1 = R0 + yyT (7.15.1)

where y is a vector of the same dimension as R0. Similarly, the modification of a cross-
correlation vector r0 will be defined as follows, where x is a scalar

r1 = r0 + xy (7.15.2)

We define the Wiener solutions based on the pairs R0, r0 and R1, r1 by

h0 = R−1
0 r0 , h1 = R−1

1 r1 (7.15.3)

and the corresponding estimates of x and estimation errors

x̂0 = hT0 y , e0 = x− x̂0 and x̂1 = hT1 y , e1 = x− x̂1 (7.15.4)

Similarly, using the notation of Section 1.7, we will consider the solution of the
forward and backward prediction problems

R0a0 = E0au , R1a1 = E1au (7.15.5)

and
R0b0 = E0bv , R1b1 = E1bv (7.15.6)

and the corresponding forward and backward prediction errors

e0a = aT0 y , e1a = aT1 y and e0b = bT0 y , e1b = bT1 y (7.15.7)

The basic question that we pose is how to construct the solution of the filtering and
prediction problems 1 from the solution of the corresponding problems 0; that is, to
construct h1 from h0, a1 from a0, and b1 from b0. We will generally refer to the various
quantities of problem-0 as a priori and to the corresponding quantities of problem-1 as
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a posteriori. The constructions are carried out with the help of the so-called a priori and
a posteriori Kalman gain vectors defined by

k0 = R−1
0 y , k1 = R−1

1 y (7.15.8)

We also define the so-called likelihood variables

ν = yTR−1
0 y , μ = 1

1+ ν =
1

1+ yTR−1
0 y

(7.15.9)

Note that the positivity condition ν > 0 is equivalent to 0 < μ < 1. Multiplying Eq.
(7.15.1) from the left by R−1

1 and from the right by R−1
0 , we obtain

R−1
0 = R−1

1 +R−1
1 yyTR−1

0 = R−1
1 + k1kT0 (7.15.10)

Acting on y and using the definitions (7.15.8) and (7.15.9), we find

R−1
0 y = R−1

1 y+ k1kT0 y ⇒ k0 = k1 + k1ν = (1+ ν)k1 = 1

μ
k1

or,
k1 = μk0 (7.15.11)

It follows that

yTR−1
1 y = kT1 y = μkT0 y = μν = ν

1+ ν = 1− 1

1+ ν = 1− μ

Thus, solving for μ

μ = 1− yTR−1
1 y = 1

1+ yTR−1
0 y

(7.15.12)

Solving Eq. (7.15.10) for R−1
1 , we obtain

R−1
1 = R−1

0 − k1kT0 = R−1
0 − μk0kT0 = R−1

0 − 1

1+ yTR−1
0 y

R−1
0 yyTR−1

0 (7.15.13)

which is recognized as the application of the matrix inversion lemma to Eq. (7.15.1). It
provides the rank-one update of the inverse matrices. Denoting P0 = R−1

0 and P1 = R−1
1 ,

we may rewrite Eq. (7.15.13) in the form

P1 = P0 − μk0kT0 , k0 = P0y , μ = 1

1+ yTP0y
(7.15.14)

Before we derive the relationship between the Wiener solutions Eq. (7.15.3), we may
obtain the relationship between the a priori and a posteriori estimation errors. Noting
that the estimates can be written as,

x̂0 = hT0 y = rT0R
−1
0 y = rT0 k0

x̂1 = hT1 y = rT1R
−1
1 y = rT1 k1

and using Eq. (7.15.2), we obtain

x̂1 = kT1 r1 = (μk0)T(r0 + xy)= μx̂0 + μνx = μx̂0 + (1− μ)x = x− μe0

from which it follows that
e1 = μe0 (7.15.15)

The simplest method of determining the relationship between the h1 and h0 is to
act on h0 by the covariance matrix R1 of problem-1, and then use the recursions (7.15.1)
and (7.15.2), that is,

R1h0 = (R0 + yyT)h0 = r0 + x̂0y = (r1 − xy)+x̂0y = r1 − e0y



7.15. Rank-One Modification of Covariance Matrices 341

Multiplying by R−1
1 , we find

h0 = R−1
1 r1 − e0R−1

1 y = h1 − e0k1

or, solving for h1 and using Eqs. (7.15.11) and (7.15.15)

h1 = h0 + e0k1 = h0 + μe0k0 = h0 + e1k0 (7.15.16)

Note that the update term can be expressed either in terms of the a priori estimation
error e0 and a posteriori Kalman gain k1, or the a posteriori error e1 and a priori Kalman
gain k0. Next, we summarize what may be called the conventional RLS computational
sequence:

1. k0 = P0y

2. ν = kT0 y , μ = 1

1+ ν
3. k1 = μk0

4. P1 = P0 − k1kT0

5. x̂0 = hT0 y , e0 = x− x̂0 , e1 = μe0 , x̂1 = x− e1

6. h1 = h0 + e0k1

Because in step 4 an entire matrix is updated, the computational complexity of the
algorithm grows quadratically with the matrix order; that is, O(M2) operations.

Next, we consider the forward and backward prediction solutions. Equations (1.7.28)
and (1.7.35) applied to R0 become

R−1
0 =

[
0 0T

0 R̃−1
0

]
+ 1

E0a
a0aT0 =

[
R̄−1

0 0
0T 0

]
+ 1

E0b
b0bT0

Acting on y and using Eq. (7.15.7), we find

k0 =
[

0
k̃0

]
+ e0a

E0a
a0 =

[
k̄0

0

]
+ e0b

E0b
b0 (7.15.17)

where k̃0 = R̃−1
0 ỹ and k̄0 = R̄−1

0 ȳ, where we recall the decompositions (1.7.2) and (1.7.3)

y =
[
ya
ỹ

]
=

[
ȳ
yb

]

Similarly, we obtain for the a posteriori gains

k1 =
[

0
k̃1

]
+ e1a

E1a
a1 =

[
k̄1

0

]
+ e1b

E1b
b1 (7.15.18)

Because b0 and b1 have last coefficients of unity, it follows that the last coefficients
of the Kalman gains will be

k0b = e0b

E0b
, k1b = e1b

E1b
(7.15.19)

Similarly, the first coefficients will be

k0a = e0a

E0a
, k1a = e1a

E1a
(7.15.20)
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Taking the dot product of Eq. (7.15.17) with y and using the definition (7.15.9) and
(7.15.7), we obtain

ν = ν̃+ e
2
0a
E0a

= ν̄+ e
2
0b
E0b

or,
ν = ν̃+ e0ak0a = ν̄+ e0bk0b (7.15.21)

where ν̃ = k̃
T
0 ỹ and ν̄ = k̄

T
0 ȳ. Similarly, using kT1 y = 1− μ and taking the dot product

of Eq. (7.15.18) with y, we find

1− μ = 1− μ̃+ e
2
1a
E1a

= 1− μ̄+ e
2
1b
E1b

or,

μ = μ̃− e
2
1a
E1a

= μ̄− e
2
1b
E1b

(7.15.22)

This is equivalent to Eq. (7.15.21). To relate a1 and a0, we apply the usual method
of acting on the a priori solution a0 by the a posteriori covariance matrix R1:

R1a0 = (R0 + yyT)a0 = R0a0 + y(yTa0)= E0au+ e0ay

Multiplying by R−1
1 and using R−1

1 u = a1/E1a, we obtain

a0 = E0a

E1a
a1 + e0ak1 (7.15.23)

This has five useful consequences. First, equating first coefficients and using Eq.
(7.15.20), we obtain

1 = E0a

E1a
+ e0ak1a = E0a

E1a
+ e0ae1a

E1a
(7.15.24)

or,
E1a = E0a + e0ae1a (7.15.25)

Second, writing Eq. (7.15.24) in the form E0a/E1a = 1 − e0ak1a, we rewrite Eq.
(7.15.23) as

a0 = (1− e0ak1a)a1 + e0ak1 = a1 + e0a(k1 − k1aa1)= a1 + e0a

[
0
k̃1

]

where we used Eq. (7.15.18). Thus,

a1 = a0 − e0a

[
0
k̃1

]
(7.15.26)

Third, taking the dot product with y and using k̃
T
1 ỹ = 1− μ̃, we find

e1a = aT1 y = aT0 y− e0a(k̃
T
1 ỹ)= e0a − (1− μ̃)e0a = μ̃e0a or,

e1a = μ̃e0a (7.15.27)

This is analogous to Eq. (7.15.15). Fourth, writing e0a = e1a/μ̃ = (1+ ν̃)e1a, it follows
by adding one to Eq. (7.15.21) that

(1+ ν)= (1+ ν̃)+(1+ ν̃)e1a
e0a

E0a
= (1+ ν̃)E0a + e0ae1a

E0a
= (1+ ν̃)E1a

E0a

and inverting,

μ = μ̃ E0a

E1a
(7.15.28)
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This, in turn, is equivalent to Eq. (7.15.22) as can be seen by

μ = μ̃ E1a − e0ae1a

E1a
= μ̃− (μ̃e0a)

e1a

E1a
= μ̃− e

2
1a
E1a

Fifth, using Eq. (7.15.27) and the result k̃1 = μ̃k̃0, we may rewrite Eq. (7.15.26) in
terms of the a posteriori error e1a and the a priori gain k̃0 as follows

a1 = a0 − e1a

[
0
k̃0

]
(7.15.29)

Defining the inverse matrices P̃0 = R̃−1
0 and P̃1 = R̃−1

1 , we summarize the conven-
tional RLS computational sequence for the forward predictor:

1. k̃0 = P̃0ỹ

2. ν̃ = k̃
T
0 ỹ , μ̃ = 1

1+ ν̃
3. k̃1 = μ̃ k̃0

4. P̃1 = P̃0 − k̃1k̃
T
0

5. e0a = aT0 y , e1a = μ̃e0a

6. a1 = a0 − e0a

[
0
k̃1

]
The fast RLS algorithms make use also of the backward predictors. Starting with

R1b0 = (R0 + yyT)b0 = E0bv + e0by, and following similar steps as for the forward
case, we obtain parallel results for the backward predictor, that is,

b0 = E0b

E1b
b1 + e0bk1 (7.15.30)

from which it follows that

1 = E0b

E1b
+ e0bk1b = E0b

E1b
+ e0be1b

E1b
(7.15.31)

or,
E1b = E0b + e0be1b (7.15.32)

Similarly, we have k̄1 = μ̄ k̄0, and
e1b = μ̄e0b (7.15.33)

and the equivalencies

ν = ν̄+ e
2
0b
E0b

� μ = μ̄− e
2
1b
E1b

� μ = μ̄ E0b

E1b
(7.15.34)

Finally, the update equations of b1 are

b1 = b0 − e0b

[
k̄1

0

]
= b0 − e1b

[
k̄0

0

]
(7.15.35)

Writing Eq. (7.15.31) in the form E1b/E0b = 1/(1−e0bk1b), and solving Eq. (7.15.30)
for b1, we have the alternative expression

b1 = E1b

E0b
(b0 − e0bk1)= b0 − e0bk1

1− e0bk1b
(7.15.36)

This is used in the so-called fast Kalman (FK) [88,89] computational sequence, which
we summarize below
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1. e0a = aT0 y

2. a1 = a0 − e0a

[
0
k̃1

]

3. e1a = aT1 y

4. E1a = E0a + e0ae1a

5. Compute the first element of k1, k1a = e1a

E1a

6. k1 =
[

0
k̃1

]
+ k1aa1 , and extract the last element of k1, k1b

7. e0b = bT0 y

8. b1 = b0 − e0bk1

1− e0bk1b

9.

[
k̄1

0

]
= k1 − k1bb1

10. x̂0 = hT0 y , e0 = x− x̂0 , h1 = h0 + e0k1 , x̂1 = hT1 y , e1 = x− x̂1

Step 9 is obtained from Eq. (7.15.18). Steps 1–9 perform the calculation and update
of the Kalman gain vector k1, which is used in step 10 for the Wiener filtering part.
This algorithm avoids the updating of the inverse autocorrelation matrices P0 and P1.
The computationally intensive parts of the algorithm are the computation of the inner
products and the vector updates. Steps 1, 2, 3, 6, 7, and 9 require M operations each,
and step 8 requires 2M operations. Thus, the gain calculation in steps 1–9 requires a
total of 8M operations. The Wiener filtering and updating part in step 10 require an
additional 3M operations. Thus, the overall complexity grows like 8M + 3M = 11M
operations; that is, linearly in the orderM.

Several of the above operations can be avoided. In particular, the computation of
the error e1a in step 3 can be done by Eq. (7.15.27), thus, avoiding the inner product.
Similarly, the inner product in step 7 can be avoided by solving Eq. (7.17.19) for e0b,
that is, e0b = k0bE0b. Also, the division by the overall scalar factor 1/(1 − e0bk1b)
in step 8 can be avoided by using Eq. (7.15.35) instead. This saves 3M out of the 8M
computations—a 40% reduction. Similarly, the operation x̂1 = hT1 y in the Wiener filtering
part can be avoided by e1 = μe0 and x̂1 = x−e1. The resulting computational sequence
is the so-called fast a posteriori error sequential technique (FAEST) [90]. It uses the a
posteriori errors and the a priori Kalman gains, and is summarized below

1. e0a = aT0 y

2. e1a = μ̃e0a = e0a/(1+ ν̃)

3. Compute the first element of k0, k0a = e0a

E0a

4. E1a = E0a + e0ae1a

5. k0 =
[

0
k̃0

]
+ k0aa0 , and extract the last element of k0, k0b

6. e0b = k0bE0b

7.

[
k̄0

0

]
= k0 − k0bb0
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8. ν = ν̃+ e0ak0a , ν̄ = ν− e0bk0b

9. e1b = μ̄e0b = e0b/(1+ ν̄)
10. E1b = E0b + e0be1b

11. a1 = a0 − e1a

[
0
k̃0

]

12. b1 = b0 − e1b

[
k̄0

0

]

13. x̂0 = hT0 y , e0 = x− x̂0 , e1 = μe0 = e0/(1+ ν) , x̂1 = x− e1

14. h1 = h0 + e1k0

Step 8 was obtained from Eq. (7.15.21). Steps l, 5, 7, 11, and 12 requireM operations
each. Therefore, the gain calculation can be done with 5M operations. The last two
Wiener filtering steps require an additional 2M operations. Thus, the total operation
count grows like 5M+ 2M = 7M. The so-called fast transversal filter (FTF) [91] compu-
tational sequence is essentially identical to FAEST, but works directly with the variables
μ instead of ν. The only change is to replace step 8 by the following:

8. μ = μ̃ E0a

E1a
, μ̄ = μ

1− e0bk0bμ
(FTF)

The second equation is obtained from (7.15.34), (7.15.3l), and the proportionality
k1 = μk0, which implies the same for the last elements of these vectors, k1b = μk0b.
We have

μ̄ = μ E1b

E0b
= μ

1− e0bk1b
= μ

1− e0bk0bμ
The above computational sequences are organized to start with the tilde quantities,

such as ν̃ and k̃0, and end up with the bar quantities such as ν̄ and k̄0. The reason has
to do with the shift-invariance property, which implies that all bar quantities computed
at the present iteration become the corresponding tilde quantities of the next iteration;
for example,

ν̃(n+ 1)= ν̄(n) , k̃0(n+ 1)= k̄0(n)

This property allows the repetition of the computational cycle from one time instant
to the next. As we have seen, the computational savings of FAEST over FK, and FK over
conventional RLS, have nothing to do with shift invariance but rather are consequences
of the rank-one updating properties.

The FAEST, FTF, and FK algorithms are the fastest known RLS algorithms. Unfor-
tunately, they can exhibit numerically unstable behavior and require the use of rescue
devices and re-initializations for continuous operation [92–101].

Next, we consider the lattice formulations. Equations (1.7.50) can be applied to the
a priori lattice

e0a = ē0a − γ0bẽ0b

e0b = ẽ0b − γ0aē0a
(7.15.37)

and a posteriori lattice
e1a = ē1a − γ1bẽ1b

e1b = ẽ1b − γ1aē1a
(7.15.38)

with the reflection coefficients computed by

γ0a = Δ0

Ē0a
, γ0b = Δ0

Ẽ0b
and γ1a = Δ1

Ē1a
, γ1b = Δ1

Ẽ1b
(7.15.39)
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To find the relationship between Δ1 and Δ0, we use Eq. (1.7.44) applied to R1

R1

[
0
b̃1

]
= Δ1u+ Ẽ1bv , R1

[
ā1

0

]
= Δ1v+ Ē1au (7.15.40)

Applying Eq. (1.7.44) also to R0, we obtain

R1

[
ā0

0

]
= (
R0 + yyT

)[
ā0

0

]
= Δ0v+ Ē0au+ ē0ay (7.15.41)

and

R1

[
0
b̃0

]
= (
R0 + yyT

)[
0
b̃0

]
= Δ0u+ Ẽ0bv+ ẽ0by (7.15.42)

Forming the dot products,

[0, b̃
T
1 ]R1

[
ā0

0

]
and [0, b̃

T
0 ]R1

[
ā1

0

]

we obtain the two alternative expressions

Δ1 = Δ0 + ē0aẽ1b , Δ1 = Δ0 + ē1aẽ0b (7.15.43)

They represent the least-squares modifications of the partial correlation (1.7.53).
The two expressions are equivalent. Applying Eq. (7.15.33) to ẽ1b, we have ẽ1b = ¯̃μẽ0b.
Applying Eq. (7.15.27) to ē1a, we have ē1a = ˜̄μē0a. But, ¯̃ν = ˜̄ν because, as is evident
from Eq. (1.7.51), the tilde part of ȳ is the same as the bar part of ỹ, namely, yc. Thus,
¯̃ν = ˜̄ν = yTc R

−1
0c yc, which implies ¯̃μ = ˜̄μ. Applying Eq. (7.15.34), we have the updating

equation μ̃ = ¯̃μ− ẽ2
1b/Ẽ1b.

As for the Wiener filtering part, we can apply the order-updating equations (1.7.24)
through (1.7.27) to the a priori and a posteriori problems to get

x̂0 = x̄0 + g0be0b , e0 = ē0 − g0be0b

x̂1 = x̄1 + g1be1b , e1 = ē1 − g1be1b
(7.15.44)

where g0b and g1b are the last components of the lattice weight vectors g0 and g1.
Because of the relationship h = LTg, it follows that the last component of h is equal
to the last component of g. Thus, extracting the last components of the relationship
h1 = h0 + e0k1, we find

g1b = g0b + e0k1b = g0b + e0
e1b

E1b
(7.15.45)

This provides a direct way to update the gs. The more conventional updating method
is indirect; it is obtained by writing

g0b = ρ0b

E0b
, g1b = ρ1b

E1b
(7.15.46)

Using Eq. (7.15.44), we can find a recursion for the ρs as follows

ρ1b = E1bg1b = E1bg0b + (ē0 − g0be0b)e1b = (E1b − e0be1b)g0b + ē0e1b

or, using E1b − e0be1b = E0b and ρ0b = E0bg0b, we obtain

ρ1b = ρ0b + ē0e1b = ρ0b + 1

μ̄
ē1e1b (7.15.47)

The conventional RLS lattice (RLSL) [102–110] computational sequence is summa-
rized below:
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1. Δ1 = Δ0 + ẽ1bē0a = Δ0 + ẽ1bē1a/¯̃μ

2. γ1a = Δ1

Ē1a
, γ1b = Δ1

Ẽ1b

3. e1a = ē1a − γ1bẽ1b , e1b = ẽ1b − γ1aē1a

4. E1a = Ē1a − γ1bΔ1 , E1b = Ẽ1b − γ1aΔ1

5. μ̃ = ¯̃μ− ẽ
2
1b
Ẽ1b

6. ρ1b = ρ0b + ē1e1b/μ̄

7. g1b = ρ1b

E1b

8. e1 = ē1 − g1be1b , x̂1 = x− e1

This is referred to as the a posteriori RLS lattice because it uses the a posteriori lattice
equations (7.15.38). There are 14 multiplication/division operations in this sequence.
We will see later that the use of the so-called forgetting factor λ requires 2 more mul-
tiplications. Thus, the total number of operations is 16. Because this sequence must
be performed once per order, it follows that, for an order-M problem, the computa-
tional complexity of the RLS lattice will be 16M operations per time update. This is to
be compared with 7M for the FAEST direct-form version. However, as we have already
mentioned, the direct-form versions can exhibit numerical instabilities. By contrast, the
lattice algorithms are numerically stable [97,111].

Many other variations of the RLS lattice are possible. For example, there is a version
based on Eq. (7.15.37), called the a priori RLS lattice algorithm [20,106,110], or a version
called the double (a priori/a posteriori) RLS algorithm [107,110] that uses Eqs. (7.15.37)
and (7.15.38) simultaneously. This version avoids the computation of the likelihood
parameter μ. Like Eq. (7.15.45), we can also obtain direct updating formulas for the
reflection coefficients, thereby avoiding the recursion (7.15.43) for the partial correla-
tions Δ. Using the second term of Eqs. (7.15.43) and (7.15.25) applied to Ē1a, that is,
Ē1a + Ē0a + ē0aē1a. we find

γ1a = Δ1

Ē1a
= Δ0 + ē1aẽ0b

Ē1a
= γ0aĒ0a + ē1aẽ0b

Ē1a

= γ0a(Ē1a − ē0aē1a)+ē1aẽ0b

Ē1a
= γ0a + ē1a

Ē1a
(ẽ0b − γ0aē0a)

and using Eq. (7.15.37), we obtain

γ1a = γ0a + e0b
ē1a

Ē1a
(7.15.48)

Similarly, working with the first term of Eq. (7.15.43), we find

γ1b = γ0b + e0a
ẽ1b

Ẽ1b
(7.15.49)

Replacing ē1a = ˜̄μē0a and ẽ1b = ¯̃μẽ0b in the above equations gives rise to the so-
called a priori direct-updating RLS lattice [111], also called the a priori error-feedback
lattice because the outputs e0a and e0b of the a priori lattice equations (7.15.37) are used
to update the reflection coefficients.

An a posteriori direct or error-feedback algorithm [111] can also be obtained by
working with the a posteriori lattice Eq. (7.15.38). In this case, we must express e0a and
e0b in terms of the a posteriori quantities as follows:

e0a = ē0a − γ0bẽ0b = (ē1a − γ0bẽ1b)/˜̄μ and e0b = (ẽ1b − γ0aē1a)/¯̃μ
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The a priori and a posteriori error-feedback lattice algorithms are computationally
somewhat more expensive—requiring O(20M) operations—than the conventional RLS
lattice. But, they have much better numerical accuracy under quantization [111] and,
of course, their long-term behavior is numerically stable.

Below we list the computational sequence of what may be called the double/direct
RLS lattice algorithm that, on the one hand, uses direct-updating for increased numerical
accuracy, and on the other, has the same computational complexity as the conventional
a posteriori RLS lattice, namely, 16M operations [156]:

1. e0a = ē0a − γ0bẽ0b , e0b = ẽ0b − γ0aē0a

2. γ1a = γ0a + e0b
ē1a

Ē1a
, γ1b = γ0b + e0a

ẽ1b

Ẽ1b

3. e1a = ē1a − γ1bẽ1b , e1b = ẽ1b − γ1aē1a

4. E1a = E0a + e1ae0a , E1b = E0b + e1be0b

5. e0 = ē0 − g0beeb

6. g1b = g0b + e0
e1b

E1b

7. e1 = ē1 − g1be1b , x̂1 = x− e1

It uses simultaneously the a priori and a posteriori lattice equations (7.15.37) and
(7.15.38). There are 14 operations (plus 2 for the forgetting factor) per order per time
update, that is, a total of 16M per time update.

Finally, we discuss the sense in which the a priori and a posteriori backward errors
e0b and e1b provide a decorrelation of the covariance matrices R0 and R1. Following
Eqs. (1.7.13) and (1.7.17), we write the LU factorizations of the a priori and a posteriori
problems

L0R0LT0 = D0b , L1R1LT1 = D1b (7.15.50)

where L0 and L1 have as rows the backward predictors bT0 = [βββT0 ,1] and bT1 = [βββT1 ,1].

L0 =
[
L̄0 0
βββT0 1

]
, L1 =

[
L̄1 0
βββT1 1

]
(7.15.51)

The corresponding backward basis vectors are constructed by

e0b = L0y =
[
L̄0 0
βββT0 1

][
ȳ
yb

]
=

[
L̄0ȳ
bT0 y

]
=

[
ē0b
e0b

]
(7.15.52)

and

e1b = L1y =
[
L̄1 0
βββT1 1

][
ȳ
yb

]
=

[
L̄1ȳ
bT1 y

]
=

[
ē1b
e1b

]
(7.15.53)

The rank-one updating property (7.15.1) for theRs can be translated into an updating
equation for the LU factorizations[112–114], in the following form:

L1 = LL0 (7.15.54)

It turns out that the unit lower triangular matrix L can be built entirely out of the a
priori backward errors e0b, as we show below. The determining equation for L may be
found by

D1b = L1R1LT1 = LL0(R0 + yyT)LT0LT = L(D0b + e0be
T
0b)L

T (7.15.55)
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Thus, L performs the LU factorization of the rank-one update of a diagonal matrix,
namely, D0b + e0be

T
0b. The solution is easily found by introducing the block decompo-

sitions

L =
[
L̄ 0
βββT 1

]
, D1b =

[
D̄1b 0
0T E1b

]
, D0b+e0be

T
0b =

[
D̄0b + ē0bē

T
0b e0bē0b

e0bē
T
0b E0b + e2

0b

]
Using the methods of Section 1.7, e.g., Eqs. (1.7.7) and (1.7.11) applied to this prob-

lem, we find the solution

βββ = −μ̄e0bD̄−1
0b ē0b , μ̄ = 1

1+ ēT0bD̄
−1
0b ē0b

(7.15.56)

Using R̄−1
0 = L̄T0 D̄−1

0b L̄0, we recognize

ēT0bD̄
−1
0b ē0b = ȳTL̄T0 D̄

−1
0b L̄0ȳ = ȳTR̄−1

0 ȳ = ν̄
Therefore, the quantity μ̄ defined above is the usual one. Similarly, we find

E1b = (E0b + e2
0b)+e0bē

T
0b βββ = E0b + e2

0b − μ̄e2
0bν̄

Noting that 1− μ̄ν̄ = μ̄, this reduces to Eq. (7.15.32). Writing D̄−1
0b ē0b = L̄−T0 R̄−1

0 ȳ =
L̄−T0 k̄0, we may express βββ in terms of the Kalman gain vector:

βββ = −μ̄e0bL−T0 k̄0 (7.15.57)

It easy to verify that the block-decomposed form of Eq. (7.15.54) is equivalent to

L̄1 = L̄L̄0 , βββ1 = βββ0 + L̄T0βββ (7.15.58)

Because of Eq. (7.15.57), the updating equation for the βββs is equivalent to Eq.
(7.15.35). Using this formalism, we may show the proportionality between the a poste-
riori and a priori backward errors. We have e1b = L1y = LL0y = Le0b, and in block
form

e1b =
[
L̄ 0
βββT 1

][
ē0b
e0b

]
=

[
L̄e0b

e0b +βββTē0b

]
Therefore, e1b = e0b +βββTē0b = e0b − μ̄e0bν̄ = μ̄e0b. It follows that L acting on e0b

can be replaced by the diagonal matrix of μ̄s acting on e0b. The double/direct lattice
algorithm effectively provides the error signals required to build L. For example, Eq.
(7.15.56) can be written in a form that avoids the computation of the μs

βββ = −μ̄e0bD̄−1
0b ē0b = −e1bD̄−1

0b ē0b (7.15.59)

The a priori and a posteriori estimates x̂0 and x̂1 may also be expressed in the back-
ward bases. Defining g0 = L−T0 h0, we find x̂0 = hT0 y = gT0L0y = gT0 e0b, and similarly,
defining g1 = L−T1 h1, we find x̂1 = gT1 e1b. Thus,

g1 = L−T1 h1 , g0 = L−T0 h0 (7.15.60)

and
x̂1 = gT1 e1b , x̂0 = gT0 e0b (7.15.61)

Finally, the updating equation (7.15.16) for the direct-form weights translates into
an updating equation for the lattice weights:

g1 = L−T1 h1 = L−T1 (h0 + e0k1)= L−TL−T0 h0 + e0L−T1 k1

where we used the factorization (7.15.54) for the first term. Using R−1
1 = LT1D−1

1bL1, we
find for the second term L−T1 k1 = L−T1 R−1

1 y = D−1
1bL1y = D−1

1b e1b. Therefore,

g1 = L−Tg0 + e0D−1
1b e1b (7.15.62)

Extracting the last elements we obtain Eq. (7.15.45).
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7.16 RLS Adaptive Filters

The LMS and gradient lattice adaptation algorithms, based on the steepest descent
method, provide a gradual, iterative, minimization of the performance index. The adap-
tive weights are not optimal at each time instant, but only after convergence. In this
section, we discuss recursive least-squares (RLS) adaptation algorithms that are based
on the exact minimization of least-squares criteria. The filter weights are optimal at each
time instant n.

Adaptive RLS algorithms are the time-recursive analogs of the block processing meth-
ods of linear prediction and FIR Wiener filtering that we discussed in Sections 5.12 and
5.14. They may be used, in place of LMS, in any adaptive filtering application. Be-
cause of their fast convergence they have been proposed for use in fast start-up channel
equalizers [115–118]. They are also routinely used in real-time system identification
applications [46–52,119]. Their main disadvantage is that they require a fair amount
of computation, O(M2) operations per time update. In biomedical applications, they
can be easily implemented on minicomputers [56,57]. In other applications, such as the
equalization of rapidly varying channels or adaptive arrays [15,120–122], they may be
too costly for implementation.

The fast reformulations of RLS algorithms, such as the RLSL, FK, FAEST, and FTF, have
O(M) computational complexity. The fast RLS algorithms combine the best of the LMS
and RLS, namely, the computational efficiency of the former and the fast convergence of
the latter. Among the fast RLS algorithms, the RLS lattice has better numerical stability
properties than the direct-form versions.

We start with the RLS formulation of the FIR Wiener filtering problem. The estimation
criterion, E = E[e(n)2]= min, is replaced with a least-squares weighted time-average
that includes all estimation errors from the initial time instant to the current time n,
that is, e(k), k = 0,1, . . . , n:

En =
n∑
k=0

e2(k)= min (7.16.1)

where
e(k)= x(k)= x̂(k)

and x̂(k) is the estimate of x(k) produced by the order-M Wiener filter

x̂(k)=
M∑
m=0

hmyk−m = [h0, h1, . . . , hM]

⎡⎢⎢⎢⎢⎢⎣
yk
yk−1

...
yk−M

⎤⎥⎥⎥⎥⎥⎦ = hTy(k)

Note that in adaptive array problems, y(k) represents the vector of measurements at
the array elements, namely, y(k)= [y0(k), y1(k), . . . , yM(k)]. To better track possible
non-stationarities in the signals, the performance index may be modified by introducing
exponential weighting

En =
n∑
k=0

λn−ke2(k)= e2(n)+λe2(n− 1)+λ2e2(n− 2)+· · · + λne2(0) (7.16.2)

where the forgetting factor λ is positive and less than one. This performance index
emphasizes the most recent observations and exponentially ignores the older ones. We
will base our discussion on this criterion. Setting the derivative with respect to h to
zero, we find the least-square analogs of the orthogonality equations

∂En
∂h

= −2
n∑
k=0

λn−ke(k)y(k)= 0
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which may be cast in a normal equation form

n∑
k=0

λn−k
[
x(k)−hTy(k)

]
y(k)= 0 , or,

⎡⎣ n∑
k=0

λn−ky(k)y(k)T
⎤⎦ h =

n∑
k=0

λn−kx(k)y(k)

Defining the quantities

R(n) =
n∑
k=0

λn−ky(k)y(k)T

r(n) =
n∑
k=0

λn−kx(k)y(k)

(7.16.3)

we write the normal equations as R(n)h = r(n), with solution h = R(n)−1r(n). Note
that the n-dependence ofR(n) and r(n)makes h depend on n; we shall write, therefore,

h(n)= R(n)−1r(n) (7.16.4)

These are the least-squares analogs of the ordinary Wiener solution, with R(n) and
r(n) playing the role of the covariance matrix R = E[y(n)yT(n)] and cross-correlation
vector r = E[x(n)y(n)]. These quantities satisfy the rank-one updating properties

R(n)= λR(n− 1)+y(n)y(n)T (7.16.5)

r(n)= λr(n− 1)+x(n)y(n) (7.16.6)

Thus, the general results of the previous section can be applied. We have the corre-
spondences:

y → y(n) x → x(n)
R1 → R(n) R0 → λR(n− 1)
P1 → P(n)= R(n)−1 P0 → λ−1P(n− 1)= λ−1R(n− 1)−1

r1 → r(n) r0 → λr(n− 1)
h1 → h(n)= R(n)−1r(n) h0 → h(n− 1)= R(n− 1)−1r(n)
x̂1 → x̂(n)= h(n)Ty(n) x̂0 → x̂(n/n− 1)= h(n− 1)Ty(n)
e1 → e(n)= x(n)−x̂(n) e0 → e(n/n− 1)= x(n)−x̂(n/n− 1)
k1 → k(n)= R(n)−1y(n) k0 → k(n/n− 1)= λ−1R(n− 1)−1y(n)
ν → ν(n)= k(n/n− 1)Ty(n) μ → μ(n)= 1/

(
1+ ν(n))

We used the notation x̂(n/n−1), e(n/n−1), and k(n/n−1) to denote the a priori
estimate, estimation error, and Kalman gain. Note thatR0, r0 are the quantitiesR(n−1),
r(n−1) scaled by the forgetting factor λ. In the a priori solution h0 = R−1

0 r0, the factors

λ cancel to give
[
λR(n − 1)

]−1[λr(n − 1)
] = R(n − 1)−1r(n − 1)= h(n − 1). Thus,

the a priori Wiener solution is the solution at the previous time instant n− 1. With the
above correspondences, the conventional RLS algorithm listed in the previous section
becomes

1. k(n/n− 1)= λ−1P(n− 1)y(n)

2. ν(n)= k(n/n− 1)Ty(n) , μ(n)= 1

1+ ν(n)
3. k(n)= μ(n)k(n/n− 1)

4. P(n)= λ−1P(n− 1)−k(n)k(n/n− 1)T



352 7. Adaptive Filters

5. x̂(n/n− 1)= h(n− 1)Ty(n) , e(n/n− 1)= x(n)−x̂(n/n− 1)

6. e(n)= μ(n)e(n/n− 1) , x̂(n)= x(n)−e(n)
7. h(n)= h(n− 1)+e(n/n− 1)k(n)

The algorithm may be initialized in time by taking R(−1)= 0, which would imply
P(−1)= ∞. Instead, we may use P(−1)= δ−1I, where δ is a very small number, and I
the identity matrix. The algorithm is quite insensitive to the choice of δ. Typical values
are δ = 0.1, or δ = 0.01.

The subroutine rls (see Appendix B) is an implementation of the algorithm. Because
the algorithm can also be used in array problems, we have designed the routine so that
its inputs are the old weights h(n − 1), the current sample x(n), and the entire data
vector y(n) (in time series problems only the current time sample yn is needed, the past
samples yn−i, i = 1,2, . . . ,M being stored in the tapped delay line). The outputs of the
routine are h(n), x̂(n), and e(n). A simulation example will be presented in the next
section.

The term Kalman gain arises by interpreting h(n)= h(n−1)+e(n/n−1)k(n) as a
Kalman predictor/corrector algorithm, where the first term h(n− 1) is a prediction of
the weight h(n) based on the past, e(n/n− 1)= x(n)−h(n− 1)Ty(n) is the tentative
estimation error made on the basis of the prediction h(n − 1), and the second term
e(n/n− 1)k(n) is the correction of the prediction. The fast convergence properties of
the algorithm can be understood by making the replacement k(n)= R(n)−1y(n) in the
update equation

h(n)= h(n− 1)+R(n)−1y(n)e(n/n− 1) (7.16.7)

It differs from the LMS algorithm by the presence of R(n)−1 in the weight update
term. Because R(n) is an estimate of the covariance matrix R = E[y(n)y(n)T], the
presence of R(n)−1 makes the RLS algorithm behave like Newton’s method, hence its
fast convergence properties [123,124]. Another important conceptual difference with
the LMS algorithm is that in the RLS algorithm the filters h(n) and h(n−1) are the exact
Wiener solutions of two different minimization criteria; namely, En = min and En−1 =
min, whereas in the LMS algorithm they are successive gradient-descent approximations
to the optimum solution.

The role of the forgetting factor λ may be understood qualitatively, by considering
the quantity

nλ =

∞∑
n=0

nλn

∞∑
n=0

λn
= λ

1− λ

to be a measure of the effective memory of the performance index En. Smaller λs cor-
respond to shorter memory nλ, and can track better the non-stationary changes of the
underlying signals. The memory nλ of the performance index should be as short as the
effective duration of the non-stationary segments, but not shorter because the perfor-
mance index will not be taking full advantage of all the available samples (which could
extend over the entire non-stationary segment); as a result, the computed weights h(n)
will exhibit more noisy behavior. In particular, if the signals are stationary, the best
value of λ is unity.

In Section 7.12, we considered the adaptive implementation of eigenvector methods
based on an LMS gradient-projection method. Adaptive eigenvector methods can also
be formulated based on the rank-one updating property (7.16.5). For example, one may
use standard numerical methods for the rank-one updating of the entire eigenproblem
of R(n) [87,125,126].
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If one is interested only in a few largest or smallest eigenvalues and corresponding
eigenvectors, one can use the more efficient power method or inverse power method
and their generalizations, such as the simultaneous and subspace iterations, or Lanc-
zos methods, which are essentially the subspace iteration improved by Rayleigh-Ritz
methods [127,128].

The basic procedure for making these numerical methods adaptive is as follows
[129–135]. The power method generates the maximum eigenvector by the iteration
e(n)= Re(n− 1), followed by normalization of e(n) to unit norm. Similarly, the mini-
mum eigenvector may be generated by the inverse power iteration e(n)= R−1e(n− 1).
Because R and R−1 are not known, they may be replaced by their estimates R(n) and
P(n)= R(n)−1, which are being updated from one time instant to the next by Eq. (7.16.5)
or by step 4 of the RLS algorithm, so that one has e(n)= R(n)e(n − 1) for the power
iteration, or e(n)= P(n)e(n− 1) for the inverse power case.

This can be generalized to the simultaneous iteration case. For example, to gener-
ate adaptively the K minimum eigenvectors spanning the noise subspace one starts at
each iteration n with K mutually orthonormalized vectors ei(n− 1), i = 0,1, . . . , K− 1.
Each is subjected to the inverse power iteration ei(n)= P(n)ei(n−1) and finally, the K
updated vectors ei(n) are mutually orthonormalized using the Gram-Schmidt or mod-
ified Gram-Schmidt procedure for vectors. Similar simultaneous iteration methods can
also be applied to the gradient-projection method of Section 7.12. The main limitation
of applying the simultaneous iteration methods is that one must know in advance the
dimension K of the noise subspace.

7.17 Fast RLS Filters

In this section, we present fast RLS algorithms based on a direct-form realization [88–
91,102–111,136–145]. Fast RLS lattice filters are discussed in the next section. The
fast direct-form RLS algorithms make use of the forward and backward predictors. The
subblock decompositions of the (M + 1)-dimensional data vector y(n) are

y(n)=

⎡⎢⎢⎢⎢⎢⎣
yn
yn−1

...
yn−M

⎤⎥⎥⎥⎥⎥⎦ =
[

ȳ(n)
yn−M

]
=

[
yn

ỹ(n)

]
(7.17.1)

Therefore, the twoM-dimensional parts of y(n) are

ȳ(n)=

⎡⎢⎢⎢⎢⎢⎣
yn
yn−1

...
yn−M+1

⎤⎥⎥⎥⎥⎥⎦ , ỹ(n)=

⎡⎢⎢⎢⎢⎢⎣
yn−1

yn−2

...
yn−M

⎤⎥⎥⎥⎥⎥⎦ (7.17.2)

The covariance matrices of these subvectors will be

R̄(n)=
n∑
k=0

λn−kȳ(k)ȳ(k)T , R̃(n)=
n∑
k=0

λn−kỹ(k)ỹ(k)T (7.17.3)

The definitions (7.17.2) imply the shift-invariance property

ỹ(n+ 1)= ȳ(n) (7.17.4)

Using this property, we find
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R̃(n+ 1) =
n+1∑
k=0

λn+1−kỹ(k)ỹ(k)T=
n∑

k=−1

λn−kỹ(k+ 1)ỹ(k+ 1)T

=
n∑

k=−1

λn−kȳ(k)ȳ(k)T= R̄(n)+λn+1ȳ(−1)ȳ(−1)T

If we make the prewindowing assumption that ȳ(−1)= 0, we obtain the shift-invariance
property for the covariance matrices

R̃(n+ 1)= R̄(n) (7.17.5)

Before we use the shift-invariance properties, we make some additional correspon-
dences from the previous section:

ȳ → ȳ(n)
ỹ → ỹ(n)
R1a1 = E1au → R(n)a(n)= E+(n)u
R1b1 = E1bv → R(n)b(n)= E−(n)v
R0a0 = E0au → λR(n− 1)a(n− 1)= λE+(n− 1)u
R0b0 = E0bv → λR(n− 1)b(n− 1)= λE−(n− 1)v
e1a = aT1 y → e+(n)= a(n)Ty(n)
e1b = bT1 y → e−(n)= b(n)Ty(n)
e0a = aT0 y → e+(n/n− 1)= a(n− 1)Ty(n)
e0b = bT0 y → e−(n/n− 1)= b(n− 1)Ty(n)
E1a = E0a + e1ae0a → E+(n)= λE+(n− 1)+e+(n)e+(n/n− 1)
E1b = E0b + e1be0b → E−(n)= λE−(n− 1)+e−(n)e−(n/n− 1)
k̃1 = R̃−1

1 ỹ → k̃(n)= R̃(n)−1ỹ(n)
k̄1 = R̄−1

1 ȳ → k̄(n)= R̄(n)−1ȳ(n)
k̃0 = R̃−1

0 ỹ → k̃(n/n− 1)= λ−1R̃(n− 1)−1ỹ(n)
k̄0 = R̄−1

0 ȳ → k̄(n/n− 1)= λ−1R̄(n− 1)−1ȳ(n)
ν̃ = k̃

T
0 ỹ → ν̃(n)= k̃(n/n− 1)Tỹ(n)

ν̄ = k̄
T
0 ȳ → ν̄(n)= k̄(n/n− 1)Tȳ(n)

μ̃ = 1/(1+ ν̃) → μ̃(n)= 1/
(
1+ ν̃(n))

μ̄ = 1/(1+ ν̄) → μ̄(n)= 1/
(
1+ ν̄(n))

We have used the superscripts ± to indicate the forward and backward quantities.
Again, note the cancellation of the factors λ from the a priori normal equations, which
implies that the a priori predictors are the predictors of the previous time instant; that
is, a0 → a(n− 1) and b0 → b(n− 1).

Using the shift-invariance properties (7.17.4) and (7.17.5), we find that all the tilde
quantities at the next time instant n + 1 are equal to the bar quantities at the present
instant n; for example,

k̃(n+ 1)= R̃(n+ 1)−1ỹ(n+ 1)= R̄(n)−1ȳ(n)= k̄(n)

Similarly,

k̃(n+ 1/n)= λ−1R̃(n)−1ỹ(n+ 1)= λ−1R̄(n− 1)−1ȳ(n)= k̄(n/n− 1)

and for the likelihood variables

ν̃(n+ 1)= k̃(n+ 1/n)Tỹ(n+ 1)= k̄(n/n− 1)Tȳ(n)= ν̄(n)
and similarly for the μs. We summarize:

k̃(n+ 1) = k̄(n) , k̃(n+ 1/n)= k̄(n/n− 1)

ν̃(n+ 1) = ν̄(n) , μ̃(n+ 1)= μ̄(n)
(7.17.6)
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These equations can be added at the ends of the computational sequences of the
previous section to complete the computational cycle at each time instant. In the present
notation, the complete fast Kalman algorithm [88,89] is:

0. At time n, we have available the quantities h(n − 1), a(n − 1), b(n − 1), k̃(n),
E+(n− 1), x(n), and y(n)

1 . e+(n/n− 1)= a(n− 1)Ty(n)

2. a(n)= a(n− 1)−e+(n/n− 1)
[

0
k̃(n)

]

3. e+(n)= a(n)Ty(n)

4. E+(n)= λE+(n− 1)+e+(n)e+(n/n− 1)

5. Compute the first element of k(n), k0(n)= e
+(n)
E+(n)

6. k(n)=
[

0
k̃(n)

]
+ k0(n)a(n), extract the last element of k(n), kM(n)

7. e−(n/n− 1)= b(n− 1)Ty(n)

8. b(n)= b(n− 1)−e−(n/n− 1)k(n)
1− e−(n/n− 1)kM(n)

9.

[
k̄(n)

0

]
= k(n)−kM(n)b(n)

10. x̂(n/n− 1)= h(n− 1)Ty(n) , e(n/n− 1)= x(n)−x̂(n/n− 1)

11. h(n)= h(n− 1)+e(n/n− 1)k(n)

12. x̂(n)= h(n)Ty(n) , e(n)= x(n)−x̂(n)
13. k̃(n+ 1)= k̄(n)

14. Go to the next time instant, n→ n+ 1

The first and last entries of the a posteriori Kalman gain vector k(n) were denoted
by k0(n) and kM(n), that is, k(n)= [k0(n), k1(n), . . . , kM(n)]T. Similarly, we obtain
the complete FAEST algorithm [90]:

0. At time n, we have available the quantities h(n−1), a(n−1), b(n−1), k̃(n/n−1),
ν̃(n), E±(n− 1), x(n), and y(n)

1 . e+(n/n− 1)= a(n− 1)Ty(n)

2. e+(n)= e+(n/n− 1)/
(
1+ ν̃(n)) = μ̃(n)e+(n/n− 1)

3. Compute the first element of k(n/n− 1), k0(n/n− 1)= e
+(n/n− 1)
λE+(n− 1)

4. E+(n)= λE+(n− 1)+e+(n)e+(n/n− 1)

5. k(n/n− 1)=
[

0
k̃(n/n− 1)

]
+ k0(n/n− 1)a(n− 1)

6. Extract the last element of k(n/n− 1), kM(n/n− 1)

7. e−(n/n− 1)= kM(n/n− 1)
[
λE−(n− 1)

]
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8.

[
k̄(n/n− 1)

0

]
= k(n/n− 1)−kM(n/n− 1)b(n− 1)

9. ν(n)= ν̃(n)+e+(n/n−1)k0(n/n−1) , ν̄(n)= ν(n)−e−(n/n−1)kM(n/n−1)

10. e−(n)= e−(n/n− 1)/
(
1+ ν̄(n)) = μ̄(n)e−(n/n− 1)

11. E−(n)= λE−(n− 1)+e−(n)e−(n/n− 1)

12. a(n)= a(n− 1)−e+(n)
[

0
k̃(n/n− 1)

]

13. b(n)= b(n− 1)−e−(n)
[

k̄(n/n− 1)
0

]

14. x̂(n/n− 1)= h(n− 1)Ty(n) , e(n/n− 1)= x(n)−x̂(n/n− 1)

15. e(n)= e(n/n− 1)/
(
1+ ν(n)) = μ(n)e(n/n− 1) , x̂(n)= x(n)−e(n)

16. h(n)= h(n− 1)+e(n)k(n/n− 1)

17. k̃(n+ 1/n)= k̄(n) , ν̃(n+ 1)= ν̄(n)
19. Go to the next time instant, n→ n+ 1

The algorithm is initialized in time by clearing the tapped delay line of the filter and
setting h(−1)= 0, a(−1)= u = [1,0T]T, b(−1)= v = [0T,1]T, k̃(0/−1)= 0, ν̃(0)= 0,
and E±(−1)= δ, where δ is a small constant. Exact initialization procedures have been
discussed in [91]. The FTF algorithm [91] is obtained by replacing step 9 by the following:

μ(n)= μ̃(n) λE
+(n− 1)
E+(n)

, μ̄(n)= μ(n)
1− e−(n/n− 1)kM(n/n− 1)μ(n)

(FTF)

The subroutine faest (see Appendix B) is an implementation of the FAEST algorithm.
The routine transforms an input pair of samples {x, y} into an output pair {x̂, e}, updates
the tapped delay line of the filter, and updates the filter h(n).

Next, we present a simulation example comparing the FAEST and LMS algorithms.
The example is the same as that discussed in Section 7.13 and defined theoretically
by Eqs. (7.13.37) and (7.13.38). Figure 7.24 shows two of the adaptive weights, h1(n)
and h2(n), adapted by FAEST and LMS. The weights are converging to their theoretical
values of h1 = 1.5 and h2 = −2. The RLS parameters were λ = 1 and δ = 0.01; the LMS
parameter was μ = 0.01.

7.18 RLS Lattice Filters

The fast direct-form RLS filters were fixed-order filters. By contrast, the RLS lattice algo-
rithms [102–111], for each time instant n, do a recursion in the order, p = 0,1, . . . ,M.
Therefore, it is necessary to indicate the order p by using an extra index in all the quan-
tities of the past two sections. For example, the order-p data vector and its bar and tilde
parts will be denoted by

yp(n)=

⎡⎢⎢⎢⎢⎢⎣
yn
yn−1

...
yn−p

⎤⎥⎥⎥⎥⎥⎦ , ȳp(n)=

⎡⎢⎢⎢⎢⎢⎣
yn
yn−1

...
yn−p+1

⎤⎥⎥⎥⎥⎥⎦ , ỹp(n)=

⎡⎢⎢⎢⎢⎢⎣
yn−1

yn−2

...
yn−p

⎤⎥⎥⎥⎥⎥⎦ (7.18.1)
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Fig. 7.24 Comparison of FAEST and LMS adaptive weights.

Therefore, we have

ȳp(n)= yp−1(n) , ỹp(n)= ȳp(n− 1)= yp−1(n− 1) (7.18.2)

Similarly, the covariance matrices will be

R̄p(n)= Rp−1(n) , R̃p(n)= Rp−1(n− 1) (7.18.3)

The order-p predictors will be denoted by ap(n) and bp(n), with error signals
e+p (n)= ap(n)Typ(n) and e−p (n)= bp(n)Typ(n) The corresponding mean-square er-
rors will be denoted by E±p (n). Similarly, the a priori estimation errors are denoted by
e+p (n/n−1)= ap(n−1)Typ(n) and e−p (n/n−1)= bp(n−1)Typ(n). Using Eq. (7.18.3),
we find the following correspondences between the order-(p−1) and order-p problems:

R̄1 → Rp−1(n), ā1 → ap−1(n), Ē1a → E+p−1(n)
R̄0 → λRp−1(n− 1), ā0 → ap−1(n− 1), Ē0a → λE+p−1(n− 1)
R̃1 → Rp−1(n− 1), b̃1 → bp−1(n− 1), Ẽ1b → E−p−1(n− 1)
R̃0 → λRp−1(n− 2), b̃0 → bp−1(n− 2), Ẽ0b → λE−p−1(n− 1)

ē1a = āT1 ȳ → e+p−1(n)= ap−1(n)Typ−1(n)
ẽ1b = b̃

T
1 ỹ → e−p−1(n− 1)= bp−1(n− 1)Typ−1(n− 1)

ē0a = āT0 ȳ → e+p−1(n/n− 1)= ap−1(n− 1)Typ−1(n)
ẽ0b = b̃

T
0 ỹ → e−p−1(n− 1/n− 2)= bp−1(n− 2)Typ−1(n− 1)

γ1a → γ+p (n)
γ0a → γ+p (n− 1)
γ1b → γ−p (n)
γ0b → γ−p (n− 1)

e1a = ē1a − γ1bẽ1b → e+p (n)= e+p−1(n)−γ−p (n)e−p−1(n− 1)

e1b = ẽ1b − γ1aē1a → e−p (n)= e−p−1(n− 1)−γ+p (n)e+p−1(n)

e0a = ē0a − γ0bẽ0b → e+p (n/n− 1)= e+p−1(n/n− 1)−γ−p (n− 1)e−p−1(n− 1/n− 2)

e0b = ẽ0b − γ0aē0a → e−p (n/n− 1)= e−p−1(n− 1/n− 2)−γ+p (n− 1)e+p−1(n/n− 1)

a1 =
[

ā1

0

]
− γ1b

[
0
b̃1

]
→ ap(n)=

[
ap−1(n)

0

]
− γ−p (n)

[
0

bp−1(n− 1)

]

b1 =
[

0
b̃1

]
− γ1a

[
ā1

0

]
→ bp(n)=

[
0

bp−1(n− 1)

]
− γ+p (n)

[
ap−1(n)

0

]

a0 =
[

ā0

0

]
− γ0b

[
0
b̃0

]
→ ap(n− 1)=

[
ap−1(n− 1)

0

]
− γ−p (n− 1)

[
0

bp−1(n− 2)

]

b0 =
[

0
b̃0

]
− γ0a

[
ā0

0

]
→ bp(n− 1)=

[
0

bp−1(n− 2)

]
− γ+p (n− 1)

[
ap−1(n− 1)

0

]
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γ1a = γ0a + e0b
ē1a

Ē1a
→ γ+p (n)= γ+p (n− 1)+e−p (n/n− 1)

e+p−1(n)
E+p−1(n)

γ1b = γ0b + e0a
ẽ1b

Ẽ1b
→ γ−p (n)= γ−p (n− 1)+e+p (n/n− 1)

e−p−1(n− 1)
E−p−1(n− 1)

e0 = ē0 − g0be0b → ep(n/n− 1)= ep−1(n/n− 1)−gp(n− 1)e−p (n/n− 1)

g1b = g0b + e0
e1b

E1b
→ gp(n)= gp(n− 1)+ep(n/n− 1)

e−p (n)
E−p (n)

e1 = ē1 − g1be1b → ep(n)= ep−1(n)−gp(n)e−p (n)
We have denoted the forward/backward reflection coefficients by γ±p (n), and the

lattice Wiener weights by gp(n). The order-p a priori and a posteriori estimation errors
are ep(n/n−1)= x(n)−x̂p(n/n−1) and ep(n)= x(n)−x̂p(n). The likelihood variable
μ = 1− yTR−1

1 y is
μp(n)= 1− yp(n)TRp(n)−1yp(n) (7.18.4)

and can also be written as

μp(n)= 1

1+ νp(n) =
1

1+ λ−1yp(n)TRp(n− 1)−1yp(n)

Similarly, we have

μ̃p(n) = 1− ỹp(n)TR̃p(n)−1ỹp(n)

= 1− yp−1(n− 1)TRp−1(n− 1)−1yp−1(n− 1)

= μp−1(n− 1)

and
μ̄p(n) = 1− ȳp(n)TR̄p(n)−1ȳp(n)

= 1− yp−1(n)TRp−1(n)−1yp−1(n)

= μp−1(n)

Therefore,
μ̃p(n)= μp−1(n− 1) , μ̄p(n)= μp−1(n) (7.18.5)

Thus, the proportionality between a posteriori and a priori errors will be

e+p (n)= μ̃p(n)e+p (n/n− 1) , e−p (n)= μ̄p(n)e−p (n/n− 1) (7.18.6)

Using either of Eq. (7.18.5), we find for the quantity ¯̃μ = ˜̄μ

¯̃μp(n)= μ̄p−1(n− 1)= μ̃p−1(n)= μp−2(n− 1) (7.18.7)

Based on the above correspondences, we can obtain all versions of RLS lattice al-
gorithms, such as the conventional a posteriori, a priori, double, and a priori and a
posteriori error-feedback. In particular, we summarize the complete double/direct RLS
lattice algorithm [156]:

0. At time n, we have available the quantities γ±p (n− 1), gp(n− 1), E±p (n− 1), and
x(n), y(n).

1. Initialize in order by

e±0 (n/n− 1)= e±0 (n)= y(n)
E±0 (n)= λE±0 (n− 1)+e±0 (n)e±0 (n/n− 1)
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e0(n/n− 1)= x(n)−g0(n− 1)e−0 (n/n− 1)

g0(n)= g0(n− 1)+e0(n/n− 1)
e−0 (n)
E−0 (n)

e0(n)= x(n)−g0(n)e−0 (n)

2. For p = 1,2, . . . ,M, compute

e+p (n/n− 1)= e+p−1(n/n− 1)−γ−p (n− 1)e−p−1(n− 1/n− 2)

e−p (n/n− 1)= e−p−1(n− 1/n− 2)−γ+p (n− 1)e+p−1(n/n− 1)

γ+p (n)= γ+p (n− 1)+e−p (n/n− 1)
e+p−1(n)
E+p−1(n)

γ−p (n)= γ−p (n− 1)+e+p (n/n− 1)
e−p−1(n− 1)
E−p−1(n− 1)

e+p (n)= e+p−1(n)−γ−p (n)e−p−1(n− 1)

e−p (n)= e−p−1(n− 1)−γ+p (n)e+p−1(n)

E±p (n)= λE±p (n− 1)+e±p (n)e±p (n/n− 1)

ep(n/n− 1)= ep−1(n/n− 1)−gp(n− 1)e−p (n/n− 1)

gp(n)= gp(n− 1)+ep(n/n− 1)
e−p (n)
E−p (n)

ep(n)= ep−1(n)−gp(n)e−p (n)

3. x̂M(n)= x(n)−eM(n), and go to the next time instant, n→ n+ 1.

The algorithm is initialized in time by clearing the delay registers of both lattices
and setting γ±p (−1)= 0, E±p (−1)= 0, and gp(−1)= 0. As in the case of the gradient
lattice, it follows that the backward outputs from the pth lattice section, e−p (n/n− 1),
will be zero for n < p; therefore, we must keep γ−p (n)= gp(n)= 0 for n < p because
these quantities require divisions by E−p (n). There are 16 multiplications/divisions in
step 2; therefore, the complexity of the algorithm grows like 16M per time update.

The subroutine rlsl (see Appendix B) is an implementation of the above algorithm.
It is essentially the same as lwf used twice for the a priori and a posteriori lattices and
with the weight adaptation parts added to it.

Figure 7.25 shows the reflection coefficients γ±1 (n) and γ±2 (n) adapted by the RLS
lattice algorithm, for the same example presented in Section 7.13, which was also used
in the FAEST simulation. Note that, after some initial transients, the forward and back-
ward reflection coefficients become more or less the same as they converge to their
theoretical values. Compare also with the reflection coefficients of Fig. 7.19 adapted by
the gradient lattice. The version of the gradient lattice that we presented uses one set
of reflection coefficients, which may be thought of as some sort of average combination
of the forward/backward ones. Indeed, the curves for the gradient lattice reflection co-
efficients fall mostly between the curves of the forward and backward ones. Similarly,
the lattice Wiener weights gp(n) have almost the same behavior as those of Fig. 7.20.
We finish this section by discussing LU factorizations. Equations (7.15.20) become

Lp(n)Rp(n)Lp(n)T= D−p (n) , λLp(n− 1)Rp(n− 1)Lp(n− 1)T= λD−p (n− 1)
(7.18.8)
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Fig. 7.25 Reflection coefficients adapted by the double/direct RLSL algorithm.

where
D−p (n)= diag{E−0 (n), E−1 (n), . . . , E−p (n)}

The vectors of a posteriori and a priori backward error signals are constructed by

e−p (n)=

⎡⎢⎢⎢⎢⎢⎣
e−0 (n)
e−1 (n)

...
e−p (n)

⎤⎥⎥⎥⎥⎥⎦ = Lp(n)yp(n) ,

e−p (n/n− 1)=

⎡⎢⎢⎢⎢⎢⎣
e−0 (n/n− 1)
e−1 (n/n− 1)

...
e−p (n/n− 1)

⎤⎥⎥⎥⎥⎥⎦ = Lp(n− 1)yp(n)

This follows from the fact that the rows of the matrices Lp(n) are the backward
predictors of successive orders. The Lp(n) matrices are related by Eq. (7.15.54), which
reads

Lp(n)= Lp(n/n− 1)Lp(n− 1) (7.18.9)

The rows of the unit lower triangular updating matrix Lp(n/n− 1) are constructed
by (7.15.59), that is,

βββp = −e−p (n)
[
λD−p−1(n− 1)

]−1
e−p−1(n/n− 1) (7.18.10)

or, component-wise

βpi = −e−p (n)
e−i (n/n− 1)
λE−i (n− 1)

= −μ̄p(n)e−p (n/n− 1)
e−i (n/n− 1)
λE−i (n− 1)

, i = 0,1, . . . , p− 1

The direct and lattice Wiener weights are related by Eq. (7.15.60), i.e., gp(n)=
Lp(n)−Thp(n), and the a posteriori and a priori estimation errors are given by Eq.
(7.15.61)

x̂p(n)= gp(n)Tep(n) , x̂p(n/n− 1)= gp(n− 1)Te−p (n/n− 1) (7.18.11)

and satisfy the recursions in order

x̂p(n)= x̂p−1(n)+gp(n)e−p (n) , x̂p(n/n−1)= x̂p−1(n/n−1)+gp(n−1)e−p (n/n−1)
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This implies the following recursions for the estimation errors

ep(n)= ep−1(n)−gp(n)e−p (n) , ep(n/n−1)= ep−1(n/n−1)−gp(n−1)e−p (n/n−1)

Finally, the time updating equation (7.15.62) for the lattice weights takes the form

gp(n)= Lp(n/n− 1)−Tgp(n− 1)+ep(n/n− 1)D−p (n)−1e−p (n)

and extracting the last component, we obtain

gp(n)= gp(n− 1)+ep(n/n− 1)
e−p (n)
E−p (n)

RLS lattice and gradient adaptive lattice filters may be used in any Wiener filtering
application. Their attractive features are: (a) computational efficiency; (b) very fast rate
of convergence, which is essentially independent of the eigenvalue spread of the input
covariance matrix; (c) modularity of structure admitting parallel VLSI implementations
[146–154]; and (d) numerical stability and accuracy under quantization.

7.19 Problems

7.1 Computer Experiment. (a) Reproduce the results of Fig. 7.3.

(b) On the same graph of part (a), plot the theoretical convergence curve of the weight
h(n) obtained by using Eq. (7.2.8).

(c) Using 10 different realizations of xn and yn, compute 10 different realizations of the
adaptive weight of Eq. (7.3.2). Compute the average weight over the 10 realizations
and plot it versus n, together with the theoretical weight of Eq. (7.2.8). Use μ = 0.03.

(d) Reproduce the results of Fig. 7.7.

7.2 In steered adaptive arrays [16] and other applications, one has to solve a constrained Wiener
filtering problem. Suppose the (M + 1)-dimensional weight vector h = [h0, h1, . . . , hM]T

satisfies the L linear constraints cTi h = fi, i = 1,2, . . . , L, where L ≤ M and the ci are given
(M+1)-dimensional vectors, and fi are given scalars. The set of constraints may be written
compactly as CTh = f, where C = [c1, c2, . . . , cL] and f = [f1, f2, . . . , fL]T .

(a) Show that the solution of the minimization problem E = E[e2
n]= min, subject to the

constraint CTh = f, is given by

h = hu +R−1C(CTR−1C)−1(f−CThu)

where hu = R−1r is the unconstrained Wiener solution and R = E[y(n)y(n)T], r =
E[xny(n)].

(b) In an adaptive implementation, h(n+ 1)= h(n)+Δh(n), the constraint must be sat-
isfied at each iteration. The time update term, therefore, must satisfy CTΔh(n)= 0.
Show that the following (gradient projection) choice satisfies this condition

Δh(n)= −μP ∂E
∂h(n)

, P = I −C(CTC)−1CT

Moreover, show that this choice moves the performance index closer to its minimum
at each iteration.

(c) Show that the resulting difference equation can be written as

h(n+ 1)= P[
h(n)−2μRh(n)+2μr

]+ hLS

where hLS = C(CTC)−1f is recognized as the least-squares solution of the linear equa-
tion CTh = f. And, show that CTh(n+ 1)= f.
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(d) Show that the LMS adaptive algorithm resulting by dropping the expectation values is,
with en = xn − x̂n = xn − h(n)Ty(n)

h(n+ 1)= P[
h(n)+2μeny(n)

]+ hLS

7.3 Rederive the results in parts (c) and (d) of Problem 7.2 using the following approach. In-
troduce a Lagrange multiplier vector λλλ = [λ1, λ2, . . . , λL]T into the performance index en-
forcing the constraint equations; that is, E = E[e2

n]+λλλT(f − CTh). Show that the ordinary
unconstrained gradient descent method h(n+ 1)= h(n)−μ∂E/∂h(n) gives rise to the dif-
ference equation

h(n+ 1)= (I − 2μR)h(n)+2μr− μCλλλ(n)
Impose the constraint CTh(n+1)= f, eliminate λλλ(n), and show that this equation is equiv-
alent to that in part (c) of the previous problem.

7.4 Verify that Eq. (7.6.5) is the solution of Eq. (7.6.4).

7.5 Consider an adaptive filter with two taps:

x̂n = h0(n)yn + h1(n)yn−1 =
[
h0(n), h1(n)

][
yn
yn−1

]
= h(n)Ty(n)

The optimal filter weights are found adaptively by the gradient descent algorithm

h(n+ 1)= h(n)−μ ∂E
∂h(n)

where E = E[e2
n] and en is the estimation error.

(a) Show that the above difference equation may be written as

h(n+ 1)= h(n)+2μ
(
r−Rh(n)

)
where

r =
[
Rxy(0)
Rxy(1)

]
, R =

[
Ryy(0) Ryy(1)
Ryy(1) Ryy(0)

]
(b) Suppose Rxy(0)= 10, Rxy(1)= 5, Ryy(0)= 3, Ryy(1)= 2. Find the optimal weights

h = lim h(n) as n→∞.

(c) Select μ = 1/6. Explain why such a value is sufficiently small to guarantee conver-
gence of the difference equation of part (a). What other values of μ also guarantee
convergence?

(d) With μ = 1/6, solve the difference equation of part (a) in closed form for n ≥ 0.
Discuss the rate of convergence.

7.6 Consider a single CCL as shown in Fig. 7.2.

(a) Suppose the reference signal is set equal to a unit step signal; that is, y(n)= u(n).
Show that the CCL will behave as a time-invariant linear filter with input xn and output
en. Determine the transfer function H(z) from xn to en.

(b) Find and interpret the poles and zeros of H(z).

(c) Determine the range of μ-values for which H(z) is stable.

7.7 Repeat Problem 7.6 when the reference signal is the alternating unit step; that is, y(n)=
(−1)nu(n).

7.8 Let hR and hI be the real and imaginary parts of the complex weight vector h = hR + jhI .
Show that

∂E
∂h∗

= 1

2

[
∂E
∂hR

+ j ∂E
∂hI

]
Consider the simultaneous gradient descent with respect to hR and hI , that is, hR → hR+ΔhR
and hI → hI +ΔhI , with

ΔhR = −μ ∂E∂hR
, ΔhI = −μ ∂E∂hI
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Show that it is equivalent to the gradient descent h→ h+Δh, where

Δh = −2μ
∂E
∂h∗

Note the conjugation and the factor of two.

7.9 Using the transfer function of Eq. (7.9.3), derive an approximate expression for the 3-dB
width of the notch. You may work to lowest order in μ.

7.10 Computer Experiment. Consider the noise canceling example discussed in Section 5.11 and
in Problems 5.25–5.27 and defined by the following choice of parameters:

ω0 = 0.075π [rads/sample] , φ = 0 , a1 = −0.5 , a2 = 0.8 , M = 4

(a) Generate a realization of the signals x(n) and y(n) and process them through the
adaptive noise canceler of Section 7.9, using an Mth order adaptive filter and adapta-
tion parameter μ. By trial and error select a value for μ that makes the LMS algorithm
convergent, but not too small as to make the convergence too slow. Plot one of the
filter weights hm(n) versus iteration number n, and compare the asymptotic value
with the theoretical value obtained in Problem 5.26.

(b) After the weights have converged, plot 100 output samples of the error signal e(n),
and observe the noise cancellation property.

(c) Repeat (a) and (b) using an adaptive filter of orderM = 6.

7.11 Computer Experiment. (a) Plot the magnitude of the frequency response of the adaptive
noise canceler notch filter of Eq. (7.9.3) versus frequency ω (z = ejω). Generate several
such plots for various values of μ and observe the effect of μ on the width of the notch.

(b) Let x(n)= ejω0n and y(n)= Aejω0n, and select the parameters as

ω0 = 0.075π, M = 2 , A = 0.01 , μ = 0.1

Process x(n) and y(n) through the adaptive noise canceler of Section 7.9, and plot
the output e(n) versus n and observe the cancellation of the signal x(n) due to the
notch filter created by the presence of the weak sinusoidal reference signal y(n).

7.12 Computer Experiment. Let x(n)= x1(n)+x2(n), where x1(n) is a narrowband component
defined by

x1(n)= sin(ω0n+φ) , ω0 = 0.075π [rads/sample]

where φ is a random phase uniformly distributed over [0,2π], and x2(n) is a fairly broad-
band component generated by sending zero-mean, unit-variance, white noise ε(n) through
the filter

x2(n)= ε(n)+2ε(n− 1)+ε(n− 2)

(a) Compute the autocorrelation functions of x1(n) and x2(n) and sketch them versus lag
k. Based on this computation, select a value for the delay Δ to be used in the adaptive
line enhancer discussed in Section 7.10.

(b) Generate a realization of x(n) and process it through the ALE with an appropriately
chosen adaptation parameter μ. Plot the output signals x̂(n) and e(n), and compare
them with the components x1(n) and x2(n), respectively.

7.13 The response of the ALE to an input sinusoid in noise can be studied as follows: Let the
input be

xn = A1ejω1n+jφ + vn
where φ is a random phase independent of the zero-mean white noise vn. The optimum
Wiener filter weights of the ALE are given by

h = R−1r

where Rij = Rxx(i− j) and ri = Rx(i+Δ), as discussed in Section 7.10.
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(a) Using the methods of Section 6.2, show that the optimum filter h is given by

h = ejω1Δ

σ2
v
P1
+M + 1

sω1

where the phasing vector sω1 was defined in Section 6.2, and P1 = |A1|2 is the power
of the sinusoid.

(b) Show that the mean output power of the ALE is given by

E
[|x̂n|2] = h†Rh = σ2

v h†h+ P1|h†sω1 |2

(c) Show that the SNR at the output is enhanced by a factor M + 1 over the SNR at the
input; that is, show that

(SNR)out= P1|h†sω1 |2
σ2
v h†h

= P1

σ2
v
(M + 1)= (M + 1)(SNR)in

(d) Derive an expression for the eigenvalue spread λmax/λmin in terms of the parameters
σ2
v , P1, andM.

(e) Show that if the delay Δ is removed; that is, Δ = 0, then the optimal weight vector
becomes equal to the unit vector

h = [1,0,0, . . . ,0]T

and that this choice corresponds to complete cancellation of the input signal x(n)
from the output e(n).

7.14 Computer Experiment. Consider the autoregressive process yn generated by the difference
equation

yn = −a1yn−1 − a2yn−2 + εn
where a1 = −1.6, a2 = 0.8, and εn is zero-mean, unit-variance, white noise. Generate a
realization of yn and process it through the LMS adaptive predictor of order 2, as discussed
in Section 7.11. Use a value for the adaptation parameter μ of your own choice. Plot the
adaptive prediction coefficients a1(n) and a2(n) versus n, and compare their converged
values with the theoretical values given above.

7.15 The adaptive predictor may be considered as the linearly constrained minimization problem
E = E[e2

n]= min, subject to the constraint that the first element of a = [1, a1, . . . , aM]T

be unity. This constraint may be written compactly as uTa = 1, where u = [1,0, . . . ,0]T .
Rederive the adaptation equations of Section 7.11 using the formalism and results of Problem
7.2.

7.16 Computer Experiment. A complex-valued version of the LMS adaptive predictor of Section
7.11 is defined by

en = yn + a1(n)yn−1 + a2(n)yn−2 + · · · + aM(n)yn−M
am(n+ 1)= am(n)−2μeny∗n−m , m = 1,2, . . . ,M

Let yn consist of two complex sinusoids in zero-mean white noise

yn = A1ejω1n +A2ejω2n + vn

where the frequencies and the SNRs are

ω1 = 0.3π, ω2 = 0.7π [radians/sample]

10 log10

[|A1|2/σ2
v
] = 10 log10

[|A2|2/σ2
v
] = 20 dB
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(a) Generate a realization of yn (using a complex-valued vn) and process it through anMth
order LMS adaptive predictor using an adaptation constant μ. Experiment with several
choices of M and μ. In each case, stop the algorithm after convergence has taken
place and plot the AR spectrum S(ω)= 1/|A(ω)|2 versus frequencyω. Discuss your
results.

(b) Using the same realization of yn, iterate the adaptive Pisarenko algorithm defined
by Eqs. (7.12.5) and (7.12.6). After convergence of the Pisarenko weights, plot the
Pisarenko spectrum estimate S(ω)= 1/|A(ω)|2 versus frequencyω.

(c) Repeat (a) and (b) when the SNR of the sinewaves is lowered to 0 dB. Compare the
adaptive AR and Pisarenko methods.

7.17 Computer Experiment. Reproduce the results of Figs. 7.19 and 7.20.

7.18 Derive Eqs. (7.14.9) and (7.14.10) that describe the operation of the adaptive linear combiner
in the decorrelated basis provided by the Gram-Schmidt preprocessor.

7.19 Computer Experiment. Reproduce the results of Figs. 7.22 and 7.23.

7.20 What is the exact operational count of the conventional RLS algorithm listed in Section 7.15?
Note that the inverse matrices P0 and P1 are symmetric and thus only their lower-triangular
parts need be updated.

7.21 Verify the solution (7.15.56) for the rank-one updating of the LU factors L0 and L1. Also
verify that Eq. (7.15.58) is equivalent to Eq. (7.15.54).

7.22 Computer Experiment.

Reproduce the results of Fig. 7.24. Carry out the same experiment (with the same input data)
using the conventional RLS algorithm and compare with FAEST. Carry out both experiments
with various values of λ and comment on the results.

7.23 Computer Experiment. Reproduce the results of Fig. 7.25.
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8
Appendices

8.1 Fortran and C Functions

The Fortran-77 and C functions that were listed in Appendices A, B, and C in the 1988
McGraw-Hill edition are now available online from the book’s web page:

http://www.ece.rutgers.edu/~orfanidi/osp2e

Listed in order of appearance in the text, these functions are:

ran - uniform random number generator
gran - gaussian random number generator
gauss - generates block of gaussian random numbers

sampcov - sample covariance matrix, Eq.(1.5.21)
corr - sample cross-correlation Rxy(k)
sigav - signal averaging, as in Example 2.3.5

lev - Levinson’s algorithm
frwlev - forward Levinson recursion
bkwlev - backward Levinson recursion
rlev - reverse of Levinson’s algorithm
lattice - analysis lattice filter
section - single section of lattice filter
schur - Schur algorithm
schur1 - Schur algorithm for Cholesky factorization
schur2 - split Schur algorithm
firw - FIR Wiener filter design
lwf - lattice Wiener filter implementation
dwf - direct-form Wiener filter implementation

yw - Yule-Walker method
burg - Burg’s method
scatter - direct scattering problem
dpd - dynamic predictive deconvolution
spike - spiking filter design
aicmdl - AIC and MDL criteria
snap - random snapshot generator
norm - normalization to unit norm
fresp - frequency response calculation (uses poly)
invresp - inverse frequency response
abs2db - absolute units to dB
db2abs - dB to absolute units
select - select eigenvector
music - MUSIC spectrum
minorm - minimum-norm eigenvector

lms - LMS adaptive Wiener filter
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lmsap - LMS adaptive predictor
glwf - gradient lattice adaptive Wiener filter
mgs - modified Gram-Schmidt adaptive preprocessor
rls - conventional RLS algorithm
faest - FAEST adaptive filtering algorithm
rlsl - double/direct adaptive RLS lattice filter

poly - polynomial evaluation
complex.c - complex arithmetic in C
complex.h - header for complex arithmetic

8.2 MATLAB Functions

MATLAB versions for the above Fortran and C functions, with some additional functions,
are available from the same web page. Listed alphabetically, they are:

acext - autocorrelation sequence extension using Levinson recursion
acmat - construct autocorrelation Toeplitz matrix from autocorrelation lags
acsing - sinusoidal representation of singular autocorrelation matrices
aicmdl - dimension of signal subspace from AIC and MDL criteria
argen - generate a zero-mean segment of an AR process
arsp - compute AR spectrum of a prediction-error filter
bkwlev - backward Levinson recursion
burg - Burg’s method of linear prediction
corr - sample cross-correlation Rxy of two vectors x and y
dpd - dynamic predictive deconvolution
dwf - sample processing algorithm of direct-form Wiener filter
dwf2 - direct-form Wiener filter using circular delay-line buffer
dwfilt - direct-form Wiener filtering of data
dwfilt2 - circular-buffer direct-form Wiener filtering of data
faest - FAEST algorithm for adaptive Wiener filter
firw - FIR Wiener filter design
flip - flip a column, a row, or both
frwlev - forward Levinson recursion
glwf - gradient lattice Wiener filter
latt - sample processing algorithm of analysis lattice filter
lattfilt - lattice filtering of a data vector
lattsect - sample processing algorithm of a single lattice section
lattsynth - sample processing algorithm of synthesis lattice filter
lev - Levinson-Durbin recursion
lms - LMS algorithm for adaptive Wiener filter
lpf - extract linear prediction filter from matrix L
lpg - extract reflection coefficients from matrix L
lwf - sample processing algorithm of lattice Wiener filter
lwfilt - lattice Wiener filtering of data
mgs - modified Gram-Schmidt adaptive array preprocessor
mgslms - modified Gram-Schmidt using LMS
minorm - minimum-norm noise subspace eigenvector
music - MUSIC spectrum computation
rlev - reverse of Levinson’s algorithm
rls - RLS algorithm for adaptive linear combiner
rlsl - double/direct RLS lattice adaptive Wiener filter
rmusic - reduced-music eigenvector method
scatt - direct scattering problem
schur1 - Schur algorithm for linear prediction
schur2 - Schur algorithm for Cholesky factorization
snap - generate snapshot matrix for array problems
spike - least-squares spiking filter design
steering - construct steering matrix of multiple sinusoids/plane-waves
yw - Yule-Walker method of linear prediction

As far as possible, the Fortran, C, and MATLAB functions use the same input and
output variables.
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adaptive
a posteriori RLS lattice, 347
array processing, 324
beamforming, 308
channel equalizers, 314
double-direct RLS lattice, 358
echo cancelers, 315
eigenvalue spread, 312
eigenvector methods, 322, 352
exact RLS lattice filters, 356
FAEST algorithm, 355
fast Kalman algorithm, 355
FTF algorithm, 356
gradient lattice filters, 327
gradient projection method, 323
Gram-Schmidt preprocessors, 334
line enhancer, 318, 363
linear combiner, 306
linear predictor, 320
noise canceler, 316
Pisarenko’s method, 322
sidelobe canceler, 308
signal separator, 318
spectrum analysis, 321, 324
tracking of zeros, 325
Wiener filters, 297, 308

accuracy of converged weights, 303
conventional RLS, 350
convergence speed, 311
correlation canceler loop, 300
FAEST algorithm, 355
fast Kalman, 355
fast RLS direct form, 353
gradient lattice, 327
gradient-descent method, 301
linear prediction, 320
LMS algorithm, 302
Newton’s method, 313
RLS lattice, 356
stochastic approximation, 303

Akaike final prediction error (FPE), 234
Akaike information criterion (AIC), 262
algebraic Riccati equation, 133
algebrain Riccati equation, 114
analysis filter, 49, 170, 171
analysis frame, 46
analysis lattice filters, 171
angle-of-arrival estimation, see superresolution

array processing
AR, ARMA, MA signal models, 50
asymptotic statistics, 276

eigenvector methods, 279
linear predictors, 277
reflection coefficients, 278
sample covariance matrix, 18, 276, 279

autocorrelation
complex-valued signals, 101
computation by convolution, 44
FFT computation, 68
function, 38
matrix, 101, 126, 150
maximum entropy extension, 222
method, 151
PARCOR coefficients, 156
periodogram, 42
power spectrum, 40
reflection symmetry, 39
sample, 42, 151
sequence extension, 164
singular, 165
sinusoidal representation, 165, 247
white noise, 39

autocorrelation method, see Yule-Walker method,
193

autoregressive
models, 150
normal equations, 151
power spectrum, 151

Backus-Gilbert parameter, 99, 215
backward prediction, 26
Bartlett window, 237
Bayes rule, 4
beamforming, 248, 249, 256, 308
biasing in frequency estimates, 242
Burg’s method, 193

CCL, 300
analog, 305
complex, 305

channel equalizers, 314
channel noise in DPCM systems, 100
Chebyshev inequality, 2
Cholesky factorization, 16, 36
clutter rejection filters, 78
conditional probability density, 4
consistent estimator, 3
correlation, 4
correlation canceler loop, 300
correlation canceling, 7
correlation matrix, 5
covariance difference methods, 255
covariance factorization, 136
covariance matrix, 5
covariance method, 193
Cramér-Rao bound, 4, 58
cross correlation, 41, 75
cross power spectrum, 41

data compression, 48, 97
deconvolution, 217, 220

374
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deconvolution with L1-norm, 220
decorrelated basis, 28
direction finding, see superresolution array pro-

cessing
distance measure, 48, 101, 197
double-direct RLS lattice, 348, 358
DPCM, 97
dynamic predictive deconvolution, 198

echo cancelers, 315
EEG signal processing

classification, 197
prediction of epileptic seizures, 325

efficient estimator, 4
eigenvalue spread, 312
eigenvector methods, 259

adaptive, 322
AR limit, 247
coherent noise, 255
covariance difference, 255
ESPRIT method, 271
generalized, 255
maximum likelihood method, 270
minimum-norm method, 247, 264
MUSIC method, 261
noise subspace, 246, 252, 259
Pisarenko’s method, 244
Rayleigh quotient, 255
reduced-order method, 267
reduced-order polynomial, 260
signal subspace, 246, 252, 259
spatial smoothing, 273

entropy of random vector, 222
ESPRIT method, 271

FAEST algorithm, 344, 355
fast Kalman algorithm, 343, 355
fast RLS direct-form filters, 353
fast RLS lattice filters, 356
Fisher information matrix, 59, 278
forgetting factor, 350
forward prediction, 24
forward/backward normal equations, 24
FTF algorithm, 345, 356

gapped functions, 91, 135, 149, 154, 180
gaussian probability density, 1
gaussian random vector, 5
generalized eigenvalue problem, 255
gradient lattice filters, 327
gradient projection method, 323
gradient-descent method, 301
Gram-Schmidt array preprocessors, 334
Gram-Schmidt orthogonalization, 11

adaptive, 334
backward prediction, 177
Cholesky factorization, 16
innovations representation, 16
linear prediction, 16, 176
LU factorization, 16
modified, 334
random variables, 14
UL factorization, 16

immitance domain Schur algorithm, 184
independent random variables, 4

inner product of random variables, 12
innovations representation, 16
inverse scattering problem, 201
Itakura’s LPC distance measure, 101, 198

joint probability density, 4

Kalman filter, 130, 139
Kalman gain, 65, 131, 340, 352

lattice structures, 32, 171
first and second orders, 94
Wiener filters, 186

least-squares inverse filters, 211
least-squares spiking filters, 211
least-squares waveshaping filters, 211
Levinson recursion, 91, 152

autocorrelation extension, 164
backward, 157
forward, 156
matrix form, 160
reverse, 157
split, 167

likelihood variables, 340
line enhancer, 318
linear estimation, 117

conditional mean, 9
correlation canceling, 7
decorrelated basis, 28
Gram-Schmidt orthogonalization, 11
jointly gaussian signals, 9
MAP, ML, MS, LMS criteria, 118
nonlinear estimation, 118
normal equations, 121
optimum estimator, 8
optimum filtering, 122
optimum prediction, 123
optimum smoothing, 122
orthogonal decomposition, 12
orthogonal projection, 8, 13
orthogonality equations, 121
signal separator, 8
unrestricted estimator, 9
Wiener filter, 125

linear prediction
adaptive, 320
analysis filter, 170
asymptotic statistics, 277
autocorrelation extension, 164
autocorrelation method, 193
backward, 23
backward Levinson recursion, 157
Burg’s method, 193
Cholesky factorization, 23, 176
covariance method, 193
data compression, 97
decorrelated basis, 28
forward, 23
forward Levinson recursion, 156
gapped function, 91, 149, 154
Gram-Schmidt orthogonalization, 176
introduction, 86
lattice filters, 171
lattice structures, 94
Levinson recursion, 91, 152
LU factorization, 23
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maximum entropy extension, 164, 222
minimum-phase property, 112, 174
normal equations, 150, 153
optimum filter, 148
orthogonal polynomials, 178
orthogonality of backward errors, 176
reflection coefficients, 155
reverse Levinson, 157
Schur algorithm, 180
Schur recursion, 91
signal classification, 197
signal modeling, 56, 147
split Schur algorithm, 184
stability test, 175
synthesis filter, 170
transfer function, 147
Yule-Walker method, 54, 193

LMS algorithm, 302
LU factorization, 16

MAP, ML, MS, LMS estimation criteria, 118
matrix inversion lemma, 239, 257, 340
matrix pencil, 272
maximum entropy, 164, 222
maximum likelihood (ML) method, 53
maximum likelihood estimator, 58
maximum likelihood method, 270
MDL criterion, 262
mean, 1
minimum-norm method, 247, 264
minimum-phase filters, 106

alternative proof, 174
invariance of autocorrelation, 108
minimum-delay property, 107, 108
minimum-phase property, 109
partial energy, 107
prediction-error filter, 112
signal models, 49, 110
spectral factorization, 110

MUSIC method, 261

Newton’s method, 313
noise canceling, 316
noise reduction ratio, 76
noise subspace, 246, 252, 259
nonlinear estimation, 118
normal distribution, 1
normal equations, 121, 153

optimum beamforming, 256
optimum filtering, 122
optimum linear combiner, 306
optimum linear estimator, 8
optimum prediction, 123
optimum signal separator, 8
optimum smoothing, 122
optimum unrestricted estimator, 9
orthogonal decomposition theorem, 12
orthogonal polynomials, 178
orthogonal projection theorem, 13
orthogonal random variables, 12
orthogonality equations, 121

parameter estimation
ML method, 53
Yule-Walker method, 54

parametric spectrum estimation, 47, 151
PARCOR coefficients, 19, 155
partial correlations, 19, 34
periodogram, 42
periodogram averaging, 44
phase vector, 223, 237, 250
Pisarenko’s method, 244, 322
power spectral density, 40
power spectrum, 40
probability density, 1
purely random signal, 39

quantization noise, 83

random number generation, 2
random signal models, 45

analysis filter, 49
AR models, 150
AR, ARMA, MA models, 50
data compression, 48
first-order AR model, 51
linear prediction, 56, 147
minimum-phase, 49
signal classification, 48
signal synthesis, 46
spectrum estimation, 47
speech synthesis, 47
stability and stationarity, 51
synthesis filter, 46
Wold decomposition, 45

random signals, 38
random signals, filtering, 72
random variable, 1
random vector, 5
random walk, 53
rank-one modification, 339
Rayleigh limit of resolution, 251
Rayleigh probability density, 63
Rayleigh quotient, 255
recursive least-squares algorithms, 350, 353, 356
reduced-order method, 267
reflection coefficients, 155
reproducing kernel, 223
Riccati difference equation, 141
RLS adaptive filters, 350, 351
RLS Kalman gain, 352
RLS lattice

a posteriori, 346
a priori, 347
direct updating, 347
double-direct, 348, 358
error-feedback, 347

RLS rank-one modification, 339

sample covariance matrix, 18
sample covariance matrix statistics, 18, 276
scattering matrix, 201
Schur algorithm, 36, 180
Schur recursion, 91, 186
Schur-Cohn stability test, 175
second-order statistics, 1
shift-invariance property, 38, 345, 354
sidelobe canceler, 308
signal averaging, 82
signal classification, 48, 197
signal estimation, 118
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signal extraction, 77
signal models, see random signal models
signal separator, 318
signal subspace, 246, 252, 259
simulation of random vectors, 18
sinusoids in noise, 102

spectral analysis, 236
snapshot vector, 18
SNIR, 257
spatial smoothing method, 273
spectral factorization, 110

Wiener filter, 127
spectrum estimation

adaptive, 321, 324
AR estimates, 238
AR models, 151, 234
autocorrelation method, 151
classical Bartlett spectrum, 237
classical methods, 44
eigenvector methods, 244
ML estimates, 242
parametric, 151
parametric models, 47
Pisarenko’s method, 244, 322
sinusoids, 236
windowed autocorrelation, 237
Yule-Walker method, 151

speech synthesis, 47, 197
split Levinson algorithm, 167
split Schur algorithm, 184
stability and stationarity, 51
stationarity, 39
steered array, 258
steering vector, 237, 250, 258
superresolution array processing, 248

adaptive, 324
Bartlett beamformer, 252
conventional beamformer, 249
LP spectrum estimate, 252
maximum likelihood method, 270
ML beamformer, 252
spatial smoothing, 273

synthesis filter, 46, 170
system identification, 75

UL factorization, 66
unbiased estimator, 3
uncorrelated random variables, 12
uniform probability density, 2
unitarity of scattering matrix, 206

variance, 1
vector space of random variables, 12

waves in layered media, 198
Welch method of spectrum estimation, 44
white noise signal, 39
whitening filter, 49, 149
Wiener filter

adaptive, 308
beamforming, 257
covariance factorization, 136
FIR filter, 122
gapped functions, 135
Kalman filter, 130
lattice realizations, 186

linear prediction, 147, 148
mean-square error, 128
orthogonal basis, 186
prewhitening, 125
spectral factorization, 127
stationary, 125
transfer function, 128
unrealizable, 128

Wiener process, 53
Wold decomposition, 45

Yule-Walker method, 54, 151, 152, 158, 193

zero tracking filters, 325


